Skip to main content

Sunsafe Bryophytes: Photoprotection from Excess and Damaging Solar Radiation

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

Whilst light is essential for photosynthesis and development of plants, both excess photosynthetically active radiation and certain wavelengths (e.g. high energy ultraviolet-B) radiation can be damaging. Plants in general possess a suite of mechanisms that act to either prevent absorption of damaging and excess radiation or to mitigate against the damage that such radiation can cause once it is absorbed. Whilst bryophytes share many of these photoprotective mechanisms with the vascular plants, there are key differences in the photoprotection available to bryophytes. Some of these differences pertain to structural features, such as protective epidermal layers, that are available to vascular plants but not generally to bryophytes. Bryophytes thus have to invest more in cellular level photoprotection than vascular plants. In other respects bryophytes may retain mechanisms found in algal ancestors (e.g. thermal energy dissipation associated with the LHCSR protein) that have been lost during the evolution of vascular plants. Many bryophytes are able to manage light absorption during desiccation and rehydration and freezing and thawing, resulting in potentially novel mechanisms of energy dissipation. Given the high stress environments that many bryophytes inhabit, from hot or frozen deserts to alpine habitats with high incident UV-B radiation, it is unsurprising that they have a suite of photoprotective strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PSII:

photosystem II

UVAC:

ultraviolet-B absorbing compound

UV-B:

ultraviolet-B

L/Lx:

lutein/lutein epoxide

NPQ:

non-photochemical quenching

ROS:

reactive oxygen species

PAR:

photosynthetically active radiation

References

  • Adamson H, Wilson M, Selkirk PM, Seppelt RD (1988) Photoinhibition in Antarctic mosses. Polarforschung 58:103–111

    Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    PubMed  CAS  Google Scholar 

  • Alboresi A, Caffarri S, Nogue F, Bassi R, Morosinotto T (2008) In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS One 3:e2033

    PubMed  Google Scholar 

  • Alboresia A, Gerottob C, Giacomettib GM, Bassia R, Morosinotto T (2010) Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci U S A 107:11128–11133

    Google Scholar 

  • Anhut S, Zinsmeister HD, Mues R, Barz W, Mackenbrock K, Koster J, Markham KR (1984) The first identification of isoflavones from a bryophyte. Phytochemistry 23:1073–1075

    CAS  Google Scholar 

  • Arroniz-Crespo M, Nunez-Olivera E, Martinez-Abaigar J (2008) Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation. Environ Pollut 151:8–16

    PubMed  CAS  Google Scholar 

  • Arroniz-Crespo M, Gwynn-Jones D, Callaghan TV, Nunez-Olivera E, Martinez-Abaigar J, Horton P, Phoenix GK (2011) Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability. Ann Bot 108:557–565

    PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    PubMed  CAS  Google Scholar 

  • Ballare CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    PubMed  CAS  Google Scholar 

  • Barker DH, Seaton GGR, Robinson SA (1997) Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant Cell Environ 20:617–624

    CAS  Google Scholar 

  • Barsig M, Schneider K, Gehrke C (1998) Effects of UV-B radiation on fine structure, carbohydrates, and pigments in Polytrichum commune. Bryologist 101:357–365

    CAS  Google Scholar 

  • Basile A, Giordano S, Lopez-Saez JA, Cobianchi RC (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52:1479–1482

    PubMed  CAS  Google Scholar 

  • Bjorn LO (2007) Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol Conserv 135:326–333

    Google Scholar 

  • Boelen P, De Boer MK, De Bakker NVJ, Rozema J (2006) Outdoor studies on the effects of solar UV-B on bryophytes: overview and methodology. Plant Ecol 182:137–152

    Google Scholar 

  • Bornman J (1998) Protective strategies in plants exposed to high visible and UV-B (280–315 nm) radiation. Photosynth Mech Eff V:3973–3978

    Google Scholar 

  • Brinkmeier E, Geiger H, Zinsmeister HD (1999) Biflavonoids and 4,2′-epoxy-3-phenylcoumarins from the moss Mnium hornum. Phytochemistry 52:297–302

    CAS  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci U S A 96:1135–1139

    PubMed  CAS  Google Scholar 

  • Caldwell MM, Flint SD (1997) Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem. Plant Ecol 128:66–76

    Google Scholar 

  • Cash TP, Pan Y, Simon MC (2007) Reactive oxygen species and cellular oxygen sensing. Free Radical Biol Med 43:1219–1225

    CAS  Google Scholar 

  • Clarke LJ, Robinson SA (2008) Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytol 179:776–783

    PubMed  Google Scholar 

  • Clarke LJ, Ayre DJ, Robinson SA (2008) Somatic mutation and the Antarctic ozone hole. J Ecol 96:378–385

    Google Scholar 

  • Cockell CS (1998) Ultraviolet-radiation, evolution and the Pi-electron system. Biol J Linn Soc 63:449–457

    Google Scholar 

  • Cooper-Driver G, Bhattacharya M (1998) Role of phenolics in plant evolution. Phytochemistry 49:1165–1174

    CAS  Google Scholar 

  • Cove DJ, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99–105

    Google Scholar 

  • Csintalan Z, Proctor MCF, Tuba Z (1999) Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. & Tayl. and Grimmia pulvinata (Hedw.) Sm. Ann Bot 84:235–244

    CAS  Google Scholar 

  • Czeczuga B, Czeczuga-Semeniuk E, Semeniuk A (2006) Effect of light quality on the content of chlorophylls, carotenoids and phytochrome in bryophytes. Trends Photochem Photobiol 11:105–116

    CAS  Google Scholar 

  • Davey MC, Ellis-Evans JC (1996) The influence of water content on the light climate within Antarctic mosses characterized using an optical microprobe. J Bryol 19:235–242

    Google Scholar 

  • Davidson AJ, Harborne JB, Longton RE (1989) Identification of hydroxycinnamic acid and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in protection against herbivory. J Hattori Bot Lab 67:413–422

    Google Scholar 

  • Deltoro VI, Calatayud A, Gimeno C, Abadia A, Barreno E (1998) Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta 207:224–228

    CAS  Google Scholar 

  • Deltoro V, Calatayud A, Morales F, Abadia A, Barreno E (1999) Changes in net photosynthesis, chlorophyll fluorescence and xanthophyll cycle interconversions during freeze-thaw cycles in the Mediterranean moss Leucodon sciuroides. Oecologia 120:499–505

    Google Scholar 

  • Demmig-Adams B, Adams I WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein-synthesis in Tortula-Ruralis. Plant Physiol 95:648–651

    PubMed  CAS  Google Scholar 

  • Dunn JL, Robinson SA (2006) Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. Global Change Biol 12:2282–2296

    Google Scholar 

  • Ehleringer J, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub Encelia farinosa. Oecologia 36:151–162

    Google Scholar 

  • Ehleringer J, Cook C (1987) Leaf hairs in Encelia (Asteraceae). Am J Bot 74:1532–1540

    Google Scholar 

  • Feld H, Zapp J, Becker H (2003) Secondary metabolites from the liverwort Tylimanthus renifolius. Phytochemistry 64:1335–1340

    PubMed  CAS  Google Scholar 

  • Fernandez-Marin B, Miguez F, Becerril JM, Garcia-Plazaola JI (2011) Dehydration-mediated activation of the xanthophyll cycle in darkness: is it related to desiccation tolerance? Planta 234:579–588

    PubMed  CAS  Google Scholar 

  • Förster B, Osmond C, Pogson B (2009) De-novo synthesis and degradation of Lx and V cycle pigments during shade and sun acclimation in avocado leaves (P. americana). Plant Physiol 149:1179–1195

    PubMed  Google Scholar 

  • García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Funct Plant Biol 34:759–773

    Google Scholar 

  • Gehrke C (1999) Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80:1844–1851

    Google Scholar 

  • Geiger H, Markham K (1992) Campylopusaurone, an auronoflavanone biflavonoid from the mosses Campylopus clavayus and Campylopus holomitrium. Phytochemistry 31:4325–4328

    CAS  Google Scholar 

  • Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2011) Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant Cell Environ 34:922–932

    PubMed  CAS  Google Scholar 

  • Green TGA, Kulle D, Pannewitz S, Sancho LG, Schroeter B (2005) UV-A protection in mosses growing in continental Antarctica. Polar Biol 28:822–827

    Google Scholar 

  • Heber U, Lange OL, Shuvalov VA (2006) Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. J Exp Bot 57:1211–1223

    PubMed  CAS  Google Scholar 

  • Heber U, Azarkovich M, Shuvalov V (2007) Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. J Exp Bot 58:2745–2759

    PubMed  CAS  Google Scholar 

  • Hooijmaijers CAM, Gould KS (2007) Photoprotective pigments in red and green gametophytes of two New Zealand liverworts. N Z J Bot 45:451–461

    Google Scholar 

  • Huttunen S, Lappalainen NM, Turunen J (2005) UV-absorbing compounds in subarctic herbarium bryophytes. Environ Pollut 133:303–314

    PubMed  CAS  Google Scholar 

  • Jiang CG, Schommer CK, Kim SY, Suh DY (2006) Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry 67:2531–2540

    PubMed  CAS  Google Scholar 

  • Karabourniotis G, Bornman JF (1999) Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol Plant 105:655–661

    CAS  Google Scholar 

  • Koes R, Quattrocchio F, Mol J (1994) The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 16:123–132

    CAS  Google Scholar 

  • Lappalainen NM, Huttunen S, Suokanerva H (2008) Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biol 14:321–333

    Google Scholar 

  • Lappalainen NM, Huttunen S, Suokanerva H, Lakkala K (2009) Seasonal acclimation of the moss Polytrichum juniperinum Hedw. to natural and enhanced ultraviolet radiation. Environ Pollut 158:891–900

    PubMed  Google Scholar 

  • Lebkuecher JG, Eickmeier WG (1991) Reduction of high irradiance damage with stem curling in Selaginella lepidophylla: a field experiment. Oecologia 88:597–604

    Google Scholar 

  • Lovelock CE, Robinson SA (2002) Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell Environ 25:1239–1250

    Google Scholar 

  • Lovelock CE, Jebb M, Osmond CB (1994) Photoinhibition and recovery in tropical plant species: response to disturbance. Oecologia 97:297–307

    Google Scholar 

  • Lovelock CE, Jackson AE, Melick DR, Seppelt RD (1995a) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961

    PubMed  CAS  Google Scholar 

  • Lovelock CE, Osmond CB, Seppelt RD (1995b) Photoinhibition in the Antarctic moss Grimmia antarctici Card. when exposed to cycles of freezing and thawing. Plant Cell Environ 18:1395–1402

    Google Scholar 

  • Lud D, Moerdijk TCW, Van De Poll WH, Buma AGJ, Huiskes AHL (2002) DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation. Plant Cell Environ 25:1579–1589

    CAS  Google Scholar 

  • Markham K (1990) Bryophyte flavonoids, their structures, distribution, and evolutionary significance. In: Zinsmeister H, Mues R (eds) Bryophytes: their chemistry and chemical taxonomy. Oxford University Press, Oxford, pp 143–159

    Google Scholar 

  • Markham KR, Given DR (1988) The major flavonoids of an Antarctic Bryum. Phytochemistry 27:2843–2845

    CAS  Google Scholar 

  • Markham KR, Porter IJ (1974) Flavonoids of the liverwort Marchantia polymorpha. Phytochemistry 13:1937–1942

    CAS  Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    PubMed  CAS  Google Scholar 

  • Martinez-Abaigar J, Nunez-Olivera E, Beaucourt N, Garcia-Alvaro MA, Tomás R, Arróniz M (2003) Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. J Bryol 25:17–30

    Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20–36

    CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyasd M (2007) Changes in biologically-active ultraviolet radiation reaching the earth’s surface. Photochem Photobiol Sci 6:218–231

    PubMed  CAS  Google Scholar 

  • Meijkamp B, Aerts R, Staaij J, Tosserams M, Ernst W, Rozema J (1999) Effects of UV-B on secondary metabolites in plants. In: Rozema J (ed) Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems. Backhuys Publishers, Leiden, pp 71–99

    Google Scholar 

  • Nabe H, Funabiki R, Kashino Y, Koike H, Satoh K (2007) Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states. Plant Cell Physiol 48:1548–1557

    PubMed  CAS  Google Scholar 

  • Newsham KK (2003) UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis. Oecologia 135:327–331

    PubMed  CAS  Google Scholar 

  • Newsham KK (2010) The biology and ecology of the liverwort Cephaloziella varians in Antarctica. Antarct Sci 22:131–143

    Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    PubMed  CAS  Google Scholar 

  • Newsham KK, Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biol 15:2574–2589

    Google Scholar 

  • Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Smith RIL (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biol 8:972–983

    Google Scholar 

  • Newsham KK, Geissler P, Nicolson M, Peat HJ, Lewis Smith RI (2005) Sequential reduction of UV-B radiation in the field alters the pigmentation of an Antarctic leafy liverwort. Environ Exp Bot 54:22–32

    CAS  Google Scholar 

  • Nichol CJ, Pieruschka P, Takayama K, Förster B, Kolber Z, Rascher U, Grace J, Robinson S, Pogson B, Osmond B (2012) Canopy conundrums: exploring the envelope of reversible down-regulation of photosynthesis in the outer and inner canopy to scale observations from the leaf to the landscape. Funct Plant Biol 39:1–24

    Google Scholar 

  • Niemi R, Martikainen PJ, Silvola J, Sonninen E, Wulff A, Holopainen T (2002) Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. New Phytol 156:509–515

    Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    PubMed  CAS  Google Scholar 

  • Post A (1990) Photoprotective pigment as an adaptive strategy in the Antarctic moss Ceratodon purpureus. Polar Biol 10:241–245

    Google Scholar 

  • Post A, Vesk M (1992) Photosynthesis, pigments and chloroplast ultrastructure of an Antarctic liverwort from sun-exposed and shaded sites. Can J Bot 70:2259–2264

    Google Scholar 

  • Proctor MCF, Smirnoff N (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiol Plant 141:130–140

    PubMed  CAS  Google Scholar 

  • Rice SK, Neal N, Mango J, Black K (2011) Relationships among shoot tissue, canopy and photosynthetic characteristics in the feathermoss Pleurozium schreberi. Bryologist 114:367–378

    Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins G, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    PubMed  CAS  Google Scholar 

  • Robberecht R, Caldwell MM (1978) Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia 32:277–287

    Google Scholar 

  • Robinson SA, Osmond CB (1994) Internal gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with Crassulacean acid metabolism. Aust J Plant Physiol 21:497–506

    CAS  Google Scholar 

  • Robinson SA, Lovelock CE, Osmond CB (1993) Wax as a mechanism for protection against photoinhibition: a study of Cotyledon orbiculata. Botanica Acta 106:307–312

    CAS  Google Scholar 

  • Robinson SA, Turnbull JD, Lovelock CE (2005) Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Global Change Biol 11:476–489

    Google Scholar 

  • Rozema J, Bjorn LO, Bornman JF, Gaberscik A, Hader DP, Trost T, Germ M, Klisch M, Groniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B Biol 66:2–12

    CAS  Google Scholar 

  • Ryan KG, Burne A, Seppelt RD (2009) Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Global Change Biol 15:1694–1702

    Google Scholar 

  • Schnitzler J-P, Jungblut T, Heller W, Kofferlein M, Hutzler P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H Jr (1996) Tissue localisation of UV-B screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol 132:247–258

    CAS  Google Scholar 

  • Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127:1–10

    Google Scholar 

  • Searles PS, Flint SD, Diaz SB, Rousseaux MC, Ballare CL, Caldwell MM (2002) Plant response to solar ultraviolet-B radiation in a southern South American Sphagnum peatland. J Ecol 90:704–713

    Google Scholar 

  • Seel WE, Hendry GAF, Lee JA (1992) Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. J Exp Bot 43:1031–1037

    CAS  Google Scholar 

  • Semerdjieva SI, Sheffield E, Phoenix GK, Gwynn-Jones D, Callaghan TV, Johnson GN (2003) Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. Plant Cell Environ 26:957–964

    PubMed  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    PubMed  CAS  Google Scholar 

  • Snell KRS, Kokubun T, Griffiths H, Convey P, Hodgson DA, Newsham KK (2009) Quantifying the metabolic cost to an Antarctic liverwort of responding to an abrupt increase in UVB radiation exposure. Global Change Biol 15:2563–2573

    Google Scholar 

  • Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388:927–935

    PubMed  CAS  Google Scholar 

  • Swain T (1976) Nature and properties of flavonoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, London, pp 425–463

    Google Scholar 

  • Taipale T, Huttunen S (2002) Moss flavonoids and their ultrastructural localisation under enhanced UV-B radiation. Polar Rec 38:211–218

    Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    PubMed  CAS  Google Scholar 

  • Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR (2010) The solar action spectrum of photosystem II damage. Plant Physiol 153:988–993

    PubMed  CAS  Google Scholar 

  • Turnbull JD, Robinson SA (2009) Accumulation of DNA damage in Antarctic mosses: correlations with ultraviolet-B radiation, temperature and turf water content vary among species. Global Change Biol 15:319–329

    Google Scholar 

  • Turnbull JD, Leslie SJ, Robinson SA (2009) Desiccation protects two Antarctic mosses from ultraviolet-B induced DNA damage. Funct Plant Biol 36:214–221

    CAS  Google Scholar 

  • United Nations Environment Programme (2012) Environmental Effects Assessment Panel. Photochem Photobiol Sci 11:13–27. doi:10.1039/C1PP90033A

    Google Scholar 

  • Van Gaalen KE, Flanagan LB, Peddle DR (2007) Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 153:19–28

    PubMed  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    PubMed  CAS  Google Scholar 

  • Watling JR, Robinson SA, Woodrow IE, Osmond CB (1997) Responses of rainforest understorey plants to excess light during sunflecks. Aust J Plant Physiol 24:17–25

    Google Scholar 

  • Webby RF, Markham KR, Lewis Smith RI (1996) Chemotypes of the Antarctic moss Bryum algens delineated by their flavonoid constituents. Biochem Syst Ecol 24:469–475

    CAS  Google Scholar 

  • Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153:1123–1134

    PubMed  CAS  Google Scholar 

  • Zotz G, Kahler H (2007) A moss “canopy” – small-scale differences in microclimate and physiological traits in Tortula ruralis. Flora 202:661–666

    Google Scholar 

Download references

Acknowledgements

Melinda Waterman is in receipt of an Australian Postgraduate Award and an Australian Institute of Nuclear Science and Engineering postgraduate award. Funding was provided by Australian Research Council DP110101714 and Antarctic Science Grants 3129 & 3042. We would like to thank Diana King for her support in preparing this review; and Johanna Turnbull, Laurence Clarke and Andrew Netherwood for production of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon A. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robinson, S.A., Waterman, M.J. (2014). Sunsafe Bryophytes: Photoprotection from Excess and Damaging Solar Radiation. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_7

Download citation

Publish with us

Policies and ethics