Skip to main content

Nanoindentation Applied to Closed-Cell Aluminium Foams

  • Chapter
  • First Online:
Book cover Nanomechanical Analysis of High Performance Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

  • 1838 Accesses

Abstract

The chapter is devoted to the assessment of effective elastic properties of an aluminium alloy appearing on cell walls of a closed-cell foam system Alporas. The methodology used for this purpose is based on a bottom-up approach which includes identification of mechanically distinct material phases by means of combination of several analyses. Electron microscopy and image analyses are employed at first to identify miscrostructural and chemical entities. Mechanical properties of the distinct phases are studied by grid nanoindentation. Phase separation is performed using statistical deconvolution. Microstructural information is then used for the assessment of effective cell wall stiffness. Several analytical and numerical tools are tested and compared for this purpose. Good mutual agreement is achieved between the methods due to the close-to-isotropic nature of the phase dispersion within the cell wall volume.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, UK

    Google Scholar 

  • Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632

    Article  Google Scholar 

  • Constantinides G, Chandran FR, Ulm F-J, Vliet KV (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng A 430(1–2):189–202

    Google Scholar 

  • De Giorgi M, Carofalo A, Dattoma V, Nobile R, Palano F (2010) Aluminium foams structural modelling. Comput Struct 88:25–35

    Article  Google Scholar 

  • Drugan WR, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MathSciNet  MATH  Google Scholar 

  • Durst K, Göken M, Vehoff H (2004) Finite element study for nanoindentation measurements on two-phase materials. J Mater Res 19:85–93

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problem. Proc Roy Soc London A 241:376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer-Cripps AC (2002) Nanoindentation. Springer Verlag, ISBN 0-387-95394-9

    Google Scholar 

  • Hasan MA, Kim A, Lee H-J (2008) Measuring the cell wall mechanical properties of Al-alloy foams using the nanoindentation method. Compos Struct 83:180–188

    Article  Google Scholar 

  • Hashin Z (1983) Analysis of composite materials—a survey. ASME J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids—some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  • Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101

    Article  MATH  Google Scholar 

  • Idris MI, Vodenitcharova Hoffman M (2009) Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression. Mater Sci Eng A 517:37–45

    Article  Google Scholar 

  • ISO 4287-(1997) geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters

    Google Scholar 

  • Jeon I, Katou K, Sonoda T, Asahina T, Kang K-J (2009) Cell wall mechanical properties of closed-cell Al foam. Mech Mater 41:60–73

    Article  Google Scholar 

  • Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143

    Article  MathSciNet  MATH  Google Scholar 

  • Miyoshi T, Itoh M, Akiyama S, Kitahara A (1998) Aluminium foam “ALPORAS”: the production process, properties and application. Materials research society symp. proc, p 521

    Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  • Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear properties of composites. Comptes-Rendus de l’Académie des Sciences série II 318:1417–1423

    Google Scholar 

  • Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Němeček J (2009) Creep effects in nanoindentation of hydrated phases of cement pastes. Mater Charact 60(9):1028–1034. doi:10.1016/j.matchar.2009.04.008

    Article  Google Scholar 

  • Němeček J (2012) Nanoindentation based analysis of heterogeneous structural materials. In: Němeček J (ed) Nanoindentation in materials science, intech, pp 89–108. doi:10.5772/50968

  • Němeček J, Králík V (2012) A two-scale micromechanical model for closed-cell aluminium foams. In: Proceedings of the thirteenth international conference on civil, structural and environmental engineering computing. Civil-Comp Press, Edinburgh, paper 259, pp 1–12. doi:10.4203/ccp.99.259

  • Němeček J, Lehmann C, Fontana P (2011a) Nanoindentation on ultra high performance concrete system. Chem Listy 105(17):656–659

    Google Scholar 

  • Němeček J, Šmilauer V, Kopecký L (2011b) Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cement Concr Compos 33(2):163–170. doi:10.1016/j.cemconcomp.2010.10.005

    Article  Google Scholar 

  • Němeček J, Králík V, Vondřejc J (2013) Micromechanical analysis of heterogeneous structural materials. Cement and Concrete Composites 36:85–92. doi:10.1016/j.cemconcomp.2012.06.015

  • Oliver W, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Papadopoulos DP, Konstantinidis IC, Papanastasiou N, Skolianos S, Lefakis H, Tsipas DN (2004) Mechanical properties of Al metal foams. Mater Lett 58(21):2574–2578

    Article  Google Scholar 

  • Saranen J, Vainikko G (2002) Periodic integral and pseudo differential equations with numerical approximation. Springer, Berlin

    Book  Google Scholar 

  • Simone AE, Gibson LJ (1998) Aluminum foams produced by liquid-state processes. Acta Mater 46(9):3109–3123

    Article  Google Scholar 

  • Sorelli L, Constantinides G, Ulm F-J, Toutlemonde F (2008) The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 38:1447–1456

    Article  Google Scholar 

  • Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenstedt J, Evans AG (1997) On the mechanical performance of closed cell Al alloy foams. Acta Mater 45:5245–5259

    Article  Google Scholar 

  • Ulm F-J, Vandamme M, Bobko C, Ortega JA (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90(9):2677–2692

    Article  Google Scholar 

  • Webelements on-line library. http://www.webelements.com/aluminium/physics.html

  • Yongliang M, Guangchun Y, Hongjie L (2010) Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams. Mater Des 31:1567–1569

    Article  Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

  • Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071. doi:10.1016/j.jcp.2010.07.010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Support of the Czech Science Foundation (P105/12/0824) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Němeček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Němeček, J. (2014). Nanoindentation Applied to Closed-Cell Aluminium Foams. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics