Skip to main content

Elastic–Plastic Behaviors of Vertically Aligned Carbon Nanotube Arrays by Large-Displacement Indentation Test

  • Chapter
  • First Online:
  • 1941 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

This chapter describes the large-displacement indentation test method for examining elastic–plastic behaviors of vertically aligned carbon nanotube arrays (VA-CNTs). The principle of this test is explained by using a cavity expansion model. The experiments have been performed on VA-CNTs synthesized by the chemical vapor deposition (CVD) method. Under a cylindrical, flat indenter, the VA-CNTs exhibit two distinct deformation stages: a short, elastic deformation at small displacement and a plateau-like, plastic deformation at large displacement. The critical indentation stress, a measure of yield stress or collapsing stress of the VA-CNT arrays, has been obtained. The deformation mechanism of the VA-CNTs at large displacement is revealed with scanning electronic microscope (SEM) images of the deformed VA-CNTs and finite element simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ABAQUS (2010) ABAQUS Theory’ manual. Simulia Inc., Pawtucket

    Google Scholar 

  • Bajpai V, Dai L, Ohashi T (2004) Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J Am Chem Soc 126:5070–5071

    Article  Google Scholar 

  • Barquins M, Maugis D (1982) Adhesive contact of axisymmetric punches on an elastic half-space-the modified Hertz-Hubers stress tensor for contacting spheres. J Mec Theo Appl 1:331–357

    MATH  Google Scholar 

  • Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures. MRS Bull 32:328–332

    Article  Google Scholar 

  • Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769

    Article  Google Scholar 

  • Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310(5752):1307–1313

    Article  Google Scholar 

  • Chen H, Roy A, Baek JB, Zhu L, Qu J, Dai L (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng Rep 70:63–91

    Article  Google Scholar 

  • Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8(9):2762–2766

    Article  Google Scholar 

  • Cola BA (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transf 52(15–16):3490–3503

    Article  Google Scholar 

  • Deshpande VS, Fleck NA (2000) Isotropic constitutive model for metallic foams. J Mech Phys Solids 48:1253–1276

    Article  MATH  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes. Springer, Berlin

    Book  Google Scholar 

  • Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512

    Article  Google Scholar 

  • Flores-Johnson EA, Li QM (2010) Indentation into polymeric foams. Int J Solids Struct 47:1987–1995

    Article  MATH  Google Scholar 

  • Hone J, Whitney M, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Synth Met 103(1–3):2498–2499

    Article  Google Scholar 

  • Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2(4):207–208

    Article  Google Scholar 

  • Hutchens SB, Hall LJ, Greer JR (2010) In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles. Adv Funct Mater 20(14):2338–2346

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Ishigami N, Ago H, Imamoto K, Tsuji M, Iakoubovskii K, Minami N (2008) Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. J Am Chem Soc 130(30):9918–9924

    Article  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kreupl FGAP, Duesberg GS, Steinhogl W, Liebau M, Unger E, Honlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408

    Article  Google Scholar 

  • Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B B(58):14013–14019

    Article  Google Scholar 

  • Liu Y, Qian WZ, Zhang Q, Cao AY, Li ZF, Zhou WP, Ma Y, Wei F (2008) Hierarchical agglomerates of carbon nanotubes as high-pressure cushions. Nano Lett 8:1323

    Article  Google Scholar 

  • Lo JCW, Lu YC, Shinozaki DM (2005) Kink band formation during microindentation of oriented polyethylene. Mater Sci Eng A 396(15):77–86

    Google Scholar 

  • Lu YC, Shinozaki DM (1998) Deep penetration microindentation testing of high density polyethylene. Mater Sci Eng A 249:134–144

    Article  Google Scholar 

  • Lu YC, Shinozaki DM (2008) Characterization and modeling of large displacement micro-/nano-indentation of polymeric solids. ASME J Eng Mater Technol 130:041001

    Article  Google Scholar 

  • Lu YC, Kurapati S, Yang F (2008) Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes. J Phys D Appl Phys 41:115415

    Article  Google Scholar 

  • Lu YC, Joseph J, Zhang Q, Dai L, Baur J (2012) Large-displacement indentation of vertically aligned carbon nanotube arrays. Exp Mech 52(9):1551–1554

    Article  Google Scholar 

  • Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J (2011) In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces 3:648–653

    Article  Google Scholar 

  • McCarter CM, Richards RF, Mesarovic SDJ, Richards CD, Bahr DF, McClain D, Jiao J (2006) Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J Mater Sci 41:7872–7878

    Article  Google Scholar 

  • Mesarovic SD, Fleck NA (1987) Spherical indentation of elastic-plastic solids. Proc R Soc Lond 455:2707–2728

    Google Scholar 

  • Mesarovic SD, McCarter CM, Bahr DF, Radhakrishnan H, Richards RF, Richards CD, McClain D, Jiao J (2007) Mechanical behavior of a carbon nanotube turf. Scripta Mater 56:157–160

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564

    Article  Google Scholar 

  • Olurin OB, Fleck NA, Ashby MF (2000) Indentation resistance of an aluminum foam. Script Mater 43:983–989

    Article  Google Scholar 

  • Park YJ, Pharr GM (2004) Nanoindentation with spherical indenters: finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 447–448:246–250

    Article  Google Scholar 

  • Pathak S, Cambaz ZG, Kalidindi SR, Swadener JG, Gogotsi Y (2009) Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47(8):1969–1976

    Article  Google Scholar 

  • Patton ST, Zhang Q, Qu L, Dai L, Voevodin AA, Baur J (2009) Electromechanical characterization of carbon nanotube grown on carbon fibers. J Appl Phys 106:104313

    Article  Google Scholar 

  • Pop E, Mann D, Wang Q, Goodson K, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  Google Scholar 

  • Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51:2213–2237

    Article  Google Scholar 

  • Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238

    Article  Google Scholar 

  • Riccardi B, Montanari R (2004) Indentation of metals by a flat-ended cylindrical punch. Mater Sci Eng A 381(1–2):281–291

    Google Scholar 

  • Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69(7–8):898–904

    Article  Google Scholar 

  • Shinozaki DM, Lo JCW, Lu YC (2008) Depth-dependnet displacement modulated indentation in oriented polypropylene. Mater Sci Eng A 491:182–191

    Article  Google Scholar 

  • Sneddon IN (1946) Boussinesq’s problem for a flat-ended cylinder. Proc Cambridge Philos Soc 42:29

    Article  MathSciNet  MATH  Google Scholar 

  • Tabor D (1996) Indentation hardness: fifty years on a personal view. Philos Mag A 74:1207

    Article  Google Scholar 

  • Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Controlled production of aligned-nanotube bundles. Nature 388:52

    Article  Google Scholar 

  • Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  • Tu JP, Zhu LP, Hou K, Guo SY (2003) Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 41:1257–1263

    Article  Google Scholar 

  • Tu JP, Jiang CX, Guo SY, Fu MF (2004) Micro-friction characteristics of aligned carbon nanotube film on an anodic aluminum oxide template. Mater Lett 58:1646–1649

    Article  Google Scholar 

  • Wilsea M, Johnson KL, Ashby MF (1975) Indentation of foamed plastics. Int J Mech Sci 17:457–460

    Article  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity strength and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  • Wright SC, Huang Y, Fleck NA (1992) Deep penetration of polycarbonate by a cylindrical punch. Mech Mater 13:277

    Article  Google Scholar 

  • Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944

    Article  Google Scholar 

  • Zhang Q, Liu J, Sager R, Dai L, Baur J (2009) Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties. Compos Sci Technol 69(5):594–601

    Article  Google Scholar 

  • Zhang Q, Lu YC, Du F, Dai L, Baur J, Foster DC (2010) Viscoelastic creep of vertically aligned carbon nanotubes. J Phys D: Appl Phys 43:315401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Charles Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, Y.C., Joseph, J., Zhang, Q., Du, F., Dai, L. (2014). Elastic–Plastic Behaviors of Vertically Aligned Carbon Nanotube Arrays by Large-Displacement Indentation Test. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics