Skip to main content

Aging, Age-Related Diseases and Peroxisomes

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Human aging is considered as one of the biggest risk factors for the development of multiple diseases such as cancer, type-2 diabetes, and neurodegeneration. In addition, it is widely accepted that these age-related diseases result from a combination of various genetic, lifestyle, and environmental factors. As biological aging is a complex and multifactorial phenomenon, the molecular mechanisms underlying disease initiation and progression are not yet fully understood. However, a significant amount of evidence supports the theory that oxidative stress may act as a primary etiologic factor. Indeed, many signaling components like kinases, phosphatases, and transcription factors are exquisitely sensitive to the cellular redox status, and a chronic or severe disturbance in redox homeostasis can promote cell proliferation or trigger cell death. Now, almost 50 years after their discovery, there is a wealth of evidence that peroxisomes can function as a subcellular source, sink, or target of reactive oxygen and nitrogen molecules. Yet, the possibility that these organelles may act as a signaling platform for a variety of age-related processes has so far been underestimated and largely neglected. In this review, we will critically discuss the possible role of peroxisomes in the human aging process in light of the available data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

αS:

α-synuclein

Aβ:

Amyloid-β peptide

ACOX1:

Acyl-CoA oxidase 1

AD:

Alzheimer’s disease

AGPS:

Alkylglycerone phosphate synthase

AOX:

Antioxidants

CAT:

Catalase

DAO:

D-amino acid oxidase

DHA:

Docosahexaenoic acid

ER:

Endoplasmic reticulum

(F)ALS:

(familial) Amyotrophic lateral sclerosis

GNPAT:

Glyceronephosphate O-acyltransferase

MAM:

Mitochondrial-associated membrane

NEFAs:

Non-esterified fatty acids

NFTs:

Neurofibrillary tangles

PBDs:

Peroxisome biogenesis disorders

PD:

Parkinson’s disease

PPAR-α:

Peroxisome proliferator activated receptor-alpha

PRDX5:

Peroxiredoxin 5

PTS1:

C-terminal peroxisomal targeting signal

PUFAs:

Polyunsaturated fatty acids

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD1:

Cu/Zn superoxide dismutase

TNF-α:

Tumor necrosis factor-alpha

UPR:

Unfolded protein response

VLCFAs:

Very-long-chain fatty acids

X-ALD:

X-linked adrenoleukodystrophy

References

  • Ahn JH, Kim SB, Sohn HJ, Lee JS, Kang YK, Kim WK (2005) Docetaxel and cisplatin combination chemotherapy in metastatic breast cancer patients with previous exposure to anthracyclines. Breast 14:304–309

    Article  PubMed  Google Scholar 

  • Amelina H, Sjödin MO, Bergquist J, Cristobal S (2011) Quantitative subproteomic analysis of age-related changes in mouse liver peroxisomes by iTRAQ LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 879:3393–3400

    Article  PubMed  CAS  Google Scholar 

  • Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525–537

    Article  PubMed  CAS  Google Scholar 

  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, Van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  PubMed  CAS  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  PubMed  CAS  Google Scholar 

  • Beier K, Volkl A, Fahimi HD (1993) The impact of aging on enzyme proteins of rat liver peroxisomes: quantitative analysis by immunoblotting and immunoelectron microscopy. Virchows Arch B Cell Pathol Incl Mol Pathol 63:139–146

    Article  PubMed  CAS  Google Scholar 

  • Beier K, Volkl A, Fahimi HD (1997) TNF-alpha downregulates the peroxisome proliferator activated receptor-alpha and the mRNAs encoding peroxisomal proteins in rat liver. FEBS Lett 412:385–387

    Article  PubMed  CAS  Google Scholar 

  • Bonekamp NA, Volkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 35:346–355

    Article  PubMed  CAS  Google Scholar 

  • Bottelbergs A, Verheijden S, Van Veldhoven PP, Just W, Devos R, Baes M (2012) Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system. J Neuroinflammation 9:61

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    PubMed  CAS  Google Scholar 

  • Boya P (2012) Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal 17:766–774

    Article  PubMed  CAS  Google Scholar 

  • Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452

    Article  PubMed  CAS  Google Scholar 

  • Carter AB, Tephly LA, Venkataraman S, Oberley LW, Zhang Y, Buettner GR, Spitz DR, Hunninghake GW (2004) High levels of catalase and glutathione peroxidase activity dampen H2O2 signaling in human alveolar macrophages. Am J Respir Cell Mol Biol 31:43–53

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106:506–518

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Liang H, Van Remmen H, Vijg J, Richardson A (2004) Catalase transgenic mice: characterization and sensitivity to oxidative stress. Arch Biochem Biophys 422:197–210

    Article  PubMed  CAS  Google Scholar 

  • Cimini A, Benedetti E, D’Angelo B, Cristiano L, Falone S, Di Loreto S, Amicarelli F, Cerù MP (2009) Neuronal response of peroxisomal and peroxisome-related proteins to chronic and acute Aβ injury. Curr Alzheimer Res 6:238–251

    Article  PubMed  CAS  Google Scholar 

  • Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G (2011) IP(3) receptors, mitochondria, and Ca signaling: implications for aging. J Aging Res. doi:10.4061/2011/920178

    PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:557–580

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  Google Scholar 

  • Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama KK, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Dirkx R, Vanhorebeek I, Martens K, Schad A, Grabenbauer M, Fahimi D, Declercq P, Van Veldhoven PP, Baes M (2005) Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41:868–878

    Article  PubMed  CAS  Google Scholar 

  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681

    Article  PubMed  CAS  Google Scholar 

  • Elsner M, Gehrmann W, Lenzen S (2011) Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60:200–208

    Article  PubMed  CAS  Google Scholar 

  • Ezaki J, Kominami E, Ueno T (2011) Peroxisome degradation in mammals. IUBMB Life 63:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Fan CY, Pan J, Usuda N, Yeldandi AV, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645

    Article  PubMed  CAS  Google Scholar 

  • Fourcade S, Lopez-Erauskin J, Galino J, Duval C, Naudi A, Jove M, Kemp S, Villarroya F, Ferrer I, Pamplona R, Portero-Otin M, Pujol A (2008) Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773

    Article  PubMed  CAS  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Frederiks WM, Bosch KS, Hoeben KA, van Marle J, Langbein S (2010) Renal cell carcinoma and oxidative stress: the lack of peroxisomes. Acta Histochem 112:364–371

    Article  PubMed  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    Article  PubMed  CAS  Google Scholar 

  • Gómez LA, Hagen TM (2012) Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol. doi:10.1016/j.semcdb.2012.04.002

    PubMed  Google Scholar 

  • Goth L, Rass P, Pay A (2004) Catalase enzyme mutations and their association with diseases. Mol Diagn 8:141–149

    Article  PubMed  Google Scholar 

  • Grimm MO, Kuchenbecker WJ, Rothhaar TL, Grosgen S, Hundsdorfer B, Burg VK, Friess P, Muller U, Grimm HS, Riemenschneider M, Hartmann T (2011) Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer’s disease. J Neurochem 116:916–925

    Article  PubMed  CAS  Google Scholar 

  • Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    Article  PubMed  CAS  Google Scholar 

  • Hamel FG, Bennett RG, Upward JL, Duckworth WC (2001) Insulin inhibits peroxisomal fatty acid oxidation in isolated rat hepatocytes. Endocrinology 142:2702–2706

    Article  PubMed  CAS  Google Scholar 

  • Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21:569–576

    Article  PubMed  CAS  Google Scholar 

  • Hellemans K, Kerckhofs K, Hannaert JC, Martens G, Van Veldhoven PP, Pipeleers D (2007) Peroxisome proliferator-activated receptor alpha-retinoid X receptor agonists induce beta-cell protection against palmitate toxicity. FEBS J 274:6094–6105

    Article  PubMed  CAS  Google Scholar 

  • Higgins CM, Jung CW, Xu ZS (2003) ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci 4:16

    Article  PubMed  Google Scholar 

  • Ho YS, Xiong Y, Ma WC, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812

    Article  PubMed  CAS  Google Scholar 

  • Hoefler G, Paschke E, Hoefler S, Moser AB, Moser HW (1991) Photosensitized killing of cultured fibroblasts from patients with peroxisomal disorders due to pyrene fatty-acid mediated ultraviolet damage. J Clin Invest 88:1873–1879

    Article  PubMed  CAS  Google Scholar 

  • Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA 108:14590–14595

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H (2012) Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61:728–738

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Zhen LX, Wang DH, Funamori Y, Ogawa K, Taketa K (1996) Prevention of mammary tumorigenesis in acatalasemic mice by vitamin E supplementation. Jpn J Cancer Res 87:680–684

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Li KW, Seitz J, Volkl A, Luers GH (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes – evidence for a natural piggyback import mechanism in mammals. Traffic 10:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137:547–574

    Article  PubMed  CAS  Google Scholar 

  • Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22:1440–1451

    Article  PubMed  CAS  Google Scholar 

  • Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976

    Article  PubMed  CAS  Google Scholar 

  • Koepke JI, Wood CS, Terlecky LJ, Walton PA, Terlecky SR (2008) Progeric effects of catalase inactivation in human cells. Toxicol Appl Pharmacol 232:99–108

    Article  PubMed  CAS  Google Scholar 

  • Kou J, Kovacs GG, Hoftberger R, Kulik W, Brodde A, Forss-Petter S, Honigschnabl S, Gleiss A, Brugger B, Wanders R, Just W, Budka H, Jungwirth P, Fischer P, Berger J (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122:271–283

    Article  PubMed  CAS  Google Scholar 

  • Lauer C, Volkl A, Riedl S, Fahimi HD, Beier K (1999) Impairment of peroxisomal biogenesis in human colon carcinoma. Carcinogenesis 20:985–989

    Article  PubMed  CAS  Google Scholar 

  • Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Tharappel JC, Cooper S, Glenn M, Glauert HP, Spear BT (2000) Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB. DNA Cell Biol 19:113–120

    Article  PubMed  Google Scholar 

  • Li X, Chen H, Epstein PN (2006) Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic beta-cells. Diabetes 55:1592–1604

    Article  PubMed  CAS  Google Scholar 

  • Lindfors E, Gopalacharyulu PV, Halperin E, Oresic M (2009) Detection of molecular paths associated with insulitis and type 1 diabetes in non-obese diabetic mouse. PLoS One 4:e7323

    Article  PubMed  Google Scholar 

  • Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L (2012) Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 29:241–254

    PubMed  CAS  Google Scholar 

  • Lopez-Erauskin J, Fourcade S, Galino J, Ruiz M, Schluter A, Naudi A, Jove M, Portero-Otin M, Pamplona R, Ferrer I, Pujol A (2011) Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol 70:84–92

    Article  PubMed  CAS  Google Scholar 

  • Manivannan S, Scheckhuber CQ, Veenhuis M, van der Klei IJ (2012) The impact of peroxisomes on cellular aging and death. Front Oncol 2:50

    Article  PubMed  Google Scholar 

  • Marsche G, Heller R, Fauler G, Kovacevic A, Nuszkowski A, Graier W, Sattler W, Malle E (2004) 2-chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis. Arterioscler Thromb Vasc Biol 24:2302–2306

    Article  PubMed  CAS  Google Scholar 

  • Mi J, Garcia-Arcos I, Alvarez R, Cristobal S (2007) Age-related subproteomic analysis of mouse liver and kidney peroxisomes. Proteome Sci 5:19

    Article  PubMed  Google Scholar 

  • Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, de Belleroche J (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–7561

    Article  PubMed  CAS  Google Scholar 

  • Mueller S, Weber A, Fritz R, Mutze S, Rost D, Walczak H, Volkl A, Stremmel W (2002) Sensitive and real-time determination of H2O2 release from intact peroxisomes. Biochem J 363:483–491

    Article  PubMed  CAS  Google Scholar 

  • Müller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao SY, Sharp P, Fietz PB, Baumgart-Vogt E, Crane DI (2011) PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 4:104–119

    Article  PubMed  Google Scholar 

  • Mutez E, Duhamel A, Defebvre L, Bordet R, Destée A, Kreisler A (2009) Lipid-lowering drugs are associated with delayed onset and slower course of Parkinson’s disease. Pharmacol Res 60:41–45

    Article  PubMed  CAS  Google Scholar 

  • Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, Andrade-Navarro MA, McBride HM (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18:102–108

    Article  PubMed  CAS  Google Scholar 

  • Paintlia MK, Paintlia AS, Contreras MA, Singh I, Singh AK (2008) Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: attenuation by N-acetyl cysteine. Exp Neurol 210:560–576

    Article  PubMed  CAS  Google Scholar 

  • Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13:3271–3290

    Article  PubMed  CAS  Google Scholar 

  • Perichon R, Bourre JM, Kelly JF, Roth GS (1998) The role of peroxisomes in aging. Cell Mol Life Sci 54:641–652

    Article  PubMed  CAS  Google Scholar 

  • Poitout V, Robertson RP (2002) Secondary beta-cell failure in type 2 diabetes: a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339–342

    Article  PubMed  CAS  Google Scholar 

  • Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8:199–213

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283:397–398

    Article  PubMed  CAS  Google Scholar 

  • Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in mammalian peroxisomal membrane. PLoS One 4:e5090

    Article  PubMed  Google Scholar 

  • Sahin E, Depinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13:397–404

    Article  PubMed  CAS  Google Scholar 

  • Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 280:41057–41068

    Article  PubMed  CAS  Google Scholar 

  • Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) d-amino acid oxidase controls motoneuron degeneration through D-serine. Proc Natl Acad Sci USA 109:627–632

    Article  PubMed  CAS  Google Scholar 

  • Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70:1033–1053

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Khan M, Singh I (2009) Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res 50:135–147

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    Article  PubMed  CAS  Google Scholar 

  • Soltow QA, Jones DP, Promislow DE (2010) A network perspective on metabolism and aging. Integr Comp Biol 50:844–854

    Article  PubMed  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Iseki E, Togo T, Yamaguchi A, Katsuse O, Katsuyama K, Kanzaki S, Shiozaki K, Kawanishi C, Yamashita S, Tanaka Y, Yamanaka S, Hirayasu Y (2007) Neuronal and glial accumulation of alpha- and beta-synucleins in human lipidoses. Acta Neuropathol 114:481–489

    Article  PubMed  CAS  Google Scholar 

  • Syed DN, Mukhtar H (2012) Gender bias in skin cancer: role of catalase revealed. J Invest Dermatol 132:512–514

    Article  PubMed  CAS  Google Scholar 

  • Terlecky SR, Koepke JI, Walton PA (2006) Peroxisomes and aging. Biochim Biophys Acta 1763:1749–1754

    Article  PubMed  CAS  Google Scholar 

  • Terlecky SR, Terlecky LJ, Giordano CR (2012) Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 3:93–97

    Article  PubMed  Google Scholar 

  • Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535

    Article  PubMed  CAS  Google Scholar 

  • Thorrez L, Laudadio I, Van Deun K, Quintens R, Hendrickx N, Granvik M, Lemaire K, Schraenen A, Van Lommel L, Lehnert S, Aguayo-Mazzucato C, Cheng-Xue R, Gilon P, Van Mechelen I, Bonner-Weir S, Lemaigre F, Schuit F (2011) Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res 21:95–105

    Article  PubMed  CAS  Google Scholar 

  • Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12:252–259

    Article  PubMed  CAS  Google Scholar 

  • Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    Article  PubMed  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wallner S, Schmitz G (2011) Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 164:573–589

    Article  PubMed  CAS  Google Scholar 

  • Walton PA, Pizzitelli M (2012) Effects of peroxisomal catalase inhibition on mitochondrial function. Front Physiol 3:108

    Article  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763:1707–1720

    Article  PubMed  CAS  Google Scholar 

  • Wood CS, Koepke JI, Teng H, Boucher KK, Katz S, Chang P, Terlecky LJ, Papanayotou I, Walton PA, Terlecky SR (2006) Hypocatalasemic fibroblasts accumulate hydrogen peroxide and display age-associated pathologies. Traffic 7:97–107

    Article  PubMed  CAS  Google Scholar 

  • Yakunin E, Moser A, Loeb V, Saada A, Faust P, Crane DI, Baes M, Sharon R (2010) Alpha-synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J Neurosci Res 88:866–876

    PubMed  CAS  Google Scholar 

  • Yang Y, Song Y, Loscalzo J (2007) Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci USA 104:10813–10817

    Article  PubMed  CAS  Google Scholar 

  • Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, Luo J, De Marzo AM, Isaacs WB (2005) Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63:316–323

    Article  PubMed  CAS  Google Scholar 

  • Zwerger M, Ho CY, Lammerding J (2011) Nuclear mechanics in disease. Annu Rev Biomed Eng 13:397–428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.F. and P.V.V. are supported by grants from the ‘Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (Onderzoeksproject G.0754.09)’ and the ‘Bijzonder Onderzoeksfonds van de KU Leuven (OT/09/045)’. B.W. is a recipient of a fellowship from the Chinese Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fransen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fransen, M., Nordgren, M., Wang, B., Apanasets, O., Van Veldhoven, P.P. (2013). Aging, Age-Related Diseases and Peroxisomes. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_3

Download citation

Publish with us

Policies and ethics