Skip to main content

Peroxisomes as a Source of Auxin Signaling Molecules

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Peroxisomes house many metabolic processes that allow organisms to safely sequester reactions with potentially damaging byproducts. Peroxisomes also produce signaling molecules; in plants, these include the hormones indole-3-acetic acid (IAA) and jasmonic acid (JA). Indole-3-butyric acid (IBA) is a chain-elongated form of the active auxin IAA and is a key tool for horticulturists and plant breeders for inducing rooting in plant cultures and callus. IBA is both made from and converted to IAA, providing a mechanism to maintain optimal IAA levels. Based on genetic analysis and studies of IBA metabolism, IBA conversion to IAA occurs in peroxisomes, and the timing and activity of peroxisomal import and metabolism thereby contribute to the IAA pool in a plant. Four enzymes have been hypothesized to act specifically in peroxisomal IBA conversion to IAA. Loss of these enzymes results in decreased IAA levels, a reduction in auxin-induced gene expression, and strong disruptions in cell elongation resulting in developmental abnormalities. Additional activity by known fatty acid β-oxidation enzymes also may contribute to IBA β-oxidation via direct activity or indirect effects. This review will discuss the peroxisomal enzymes that have been implicated in auxin homeostasis and the importance of IBA-derived IAA in plant growth and development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2,4-D:

2,4-dichloroacetic acid

2,4-DB:

2,4-dichlorobutyric acid

ACAD:

Acyl-CoA dehydrogenase

APH:

Aminoglycoside phosphotransferase

Col:

Columbia-0

ECH:

Enoyl-CoA hydratase

ETF:

Electron transfer flavoprotein

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

IBR:

IBA-response

JA:

Jasmonic acid

NAA:

1-napthaleneacetic acid

PAA:

Phenylacetic acid

PED:

Peroxisome defective

PEX:

Peroxin

SDR:

Short-chain dehydrogenase/reductase

Ws:

Wassilewskija

References

  • Adham AR, Zolman BK, Millius A, Bartel B (2005) Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in β-oxidation. Plant J 41:859–874

    Article  PubMed  CAS  Google Scholar 

  • Arent S, Pye VE, Henriksen A (2008) Structure and function of plant acyl-CoA oxidases. Plant Physiol Biochem 46:292–301

    Article  PubMed  CAS  Google Scholar 

  • Azucena E, Mobashery S (2001) Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat 4:106–117

    Article  PubMed  CAS  Google Scholar 

  • Baraldi R, Bertazza G, Predieri S, Bregoli AM, Cohen JD (1993) Uptake and metabolism of indole-3-butyric acid during the in vitro rooting phase in pear cultivars (Pyrus communis). Acta Hortic 329:289–291

    Google Scholar 

  • Barkawi LS, Tam YY, Tillman JA, Pederson B, Calio J, Al-Amier H, Emerick M, Normanly J, Cohen JD (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372:177–188

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J Plant Growth Regul 20:198–216

    Article  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20: 1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  PubMed  CAS  Google Scholar 

  • Cousson A (2010) Indolyl-3-butyric acid-induced Arabidopsis stomatal opening mediated by 3’,5’-cyclic guanosine-monophosphate. Plant Physiol Biochem 48:977–986

    Article  PubMed  CAS  Google Scholar 

  • Davies P (2004) The plant hormones: their nature, occurrence and function. Kluwer Academic, Dordrecht

    Google Scholar 

  • de Klerk G-J, van der Krieken WM, de Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol-Plant 35:189–199

    Article  Google Scholar 

  • Dillon S, Bateman A (2004) The hotdog fold: wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinform 5:109

    Article  Google Scholar 

  • Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, Nussaume L, Graham IA (2000) Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem 275:34375–34381

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Chen K-H, Cohen JD (1989) Identification of indole-3-butyric acid as an endogenous constituent of maize kernels and leaves. Plant Growth Regul 8:215–223

    Article  CAS  Google Scholar 

  • Epstein E, Lavee S (1984) Conversion of indole-3-butyric acid to indole-3-acetic acid by cuttings of grapevine (Vitis vinifera) and olive (Olea europea). Plant Cell Physiol 25:697–703

    Google Scholar 

  • Fan S, Wang X, Li P, Zhang Q, Zhang W (2011) Simultaneous determination of 13 phytohormones in oilseed rape tissues by liquid chromatography-electrospray tandem mass spectrometry and the evaluation of the matrix effect. J Sep Sci 34:640–650

    Article  PubMed  CAS  Google Scholar 

  • Fawcett CH, Wain RL, Wightman F (1960) The metabolism of 3-indolylalkanecarboxylic acids, and their amides, nitriles and methyl esters in plant tissues. Proc R Soc Lond B Biol Sci 17: 231–254

    Article  Google Scholar 

  • Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL (2007) The COMATOSE ATP-binding cassette transporter is required for rull rertility in Arabidopsis. Plant Physiol 144:1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16:394–405

    Article  PubMed  CAS  Google Scholar 

  • Goepfert S, Hiltunen JK, Poirier Y (2006) Identification and functional characterization of a monofunctional peroxisomal enoyl-CoA hydratase 2 that participates in the degradation of even cis-unsaturated fatty acids in Arabidopsis thaliana. J Biol Chem 281:35894–35903

    Article  PubMed  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    Article  PubMed  CAS  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Ann Rev Plant Biol 59:115–142

    Article  CAS  Google Scholar 

  • Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B (2011) Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiol Biochem 49:1259–1263

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Toriyama K, Kondo M, Nishimura M (1998) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxidation. Plant Cell 10:183–196

    PubMed  CAS  Google Scholar 

  • Hayashi M, Nito K, Toriyama-Kato K, Kondo M, Yamaya T, Nishimura M (2000) AtPex14p maintains peroxisomal functions by determining protein targeting to three kinds of plant peroxisomes. EMBO J 19:5701–5710

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M (2002) Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation. Plant Cell Physiol 43:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  PubMed  CAS  Google Scholar 

  • Khan BR, Adham AR, Zolman BK (2012) Peroxisomal acyl-CoA oxidase 4 activity differs between Arabidopsis accessions. Plant Mol Biol 78:45–58

    Article  PubMed  Google Scholar 

  • Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J Biosci Bioeng 111:67–70

    Article  PubMed  CAS  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee S-W, Yun D-J, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    Article  PubMed  CAS  Google Scholar 

  • King JJ, Stimart DP (1998) Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L. Heynh J Her 89:481–487

    Article  CAS  Google Scholar 

  • Linka N, Esser C (2012) Transport proteins regulate the flux of metabolites and cofactors across the membrane of plants peroxisomes. Front Plant Sci 3:3

    Article  PubMed  Google Scholar 

  • Liu X, Barkawi L, Gardner G, Cohen J (2012) Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling. Plant Physiol Biochem 158:1988–2000

    CAS  Google Scholar 

  • Ludwig-Müller JEE (1993) Analysis of indole-3-butyric acid in Arabidopsis thaliana. Acta Hort 329:109–111

    Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Article  Google Scholar 

  • Ludwig-Müller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320–329

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Epstein E (1991) Occurrence and in vivo biosynthesis of indole-3-butyric acid in corn (Zea mays L.). Plant Physiol 97:765–770

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Epstein E (1994) Indole-3-butyric acid in Arabidopsis thaliana III. In vivo biosynthesis. Plant Growth Regul 14:7–14

    Article  Google Scholar 

  • Ludwig-Müller J, Hilgenberg W (1995) Characterization and partial purification of indole-3-butyric acid synthetase from maize (Zea mays). Physiol Plant 94:651–660

    Article  Google Scholar 

  • Ludwig-Müller J, Schubert B, Pieper K (1995) Regulation of IBA synthetase from maize (Zea mays L.) by drought stress and ABA. J Exp Bot 46:423–432

    Article  Google Scholar 

  • Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  • McCarthy-Suárez I, Gómez M, del Río LA, Palma JM (2011a) Organ-specific effects of the auxin herbicide 2,4-D on the oxidative stress and senescence-related parameters of the stems of pea plants. Acta Physiol Plant 33:2239–2247

    Article  Google Scholar 

  • McCarthy-Suárez I, Gómez M, del Río LA, Palma JM (2011b) Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants. Biolog Plant 55:485–492

    Article  Google Scholar 

  • Monroe-Augustus M, Ramón N, Ratzel S, Lingard M, Christensen S, Murali C, Bartel B (2011) Matrix proteins are inefficiently imported into Arabidopsis peroxisomes lacking the receptor-docking peroxin PEX14. Plant Mol Biol 77:1–15

    Article  PubMed  CAS  Google Scholar 

  • Nordström A-C, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861

    Article  PubMed  Google Scholar 

  • Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K (2012) Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72:523–536

    Article  PubMed  Google Scholar 

  • Padilla I, Vidoy I, Encina C (2009) Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots. Plant Cell Rep 28:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1: 321–337

    Article  PubMed  CAS  Google Scholar 

  • Pazmiño DM, Rodríguez-Serrano M, Romero-Puertas MC, Archilla-Ruíz A, del Río LA, Sandalio LM (2011) Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant Cell Environ 34:1874–1889

    Article  PubMed  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2

    Google Scholar 

  • Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872

    Article  PubMed  CAS  Google Scholar 

  • Ramón NM, Bartel B (2010) Interdependence of the peroxisome-targeting receptors in Arabidopsis thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into peroxisomes. Mol Biol Cell 21:1263–1271

    Article  PubMed  Google Scholar 

  • Richmond TA, Bleecker AB (1999) A defect in β-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1924

    PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Gómez M, Sandalio LM, Corpas FJ, del Río LA, Palma JM (2004) Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ 27:1135–1148

    Article  CAS  Google Scholar 

  • Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, Łangowski Ł, Nejedlá E, Fujita H, Itoh H, Syōno K, Hejátko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy AS, Friml J (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci 107:10749–10753

    Article  PubMed  Google Scholar 

  • Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid β-oxidation is essential for embryo development. J Biol Chem 278:21370–21377

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Eastmond PJ, Gilday AD, Slocombe SP, Larson TR, Baker A, Graham IA (2006) The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal β-oxidation is essential for seedling establishment. Plant J 45:930–941

    Article  PubMed  CAS  Google Scholar 

  • Schneider EA, Kazakoff CW, Wightman F (1985) Gas chromatography–mass spectrometry evidence for several endogenous auxins in pea seedling organs. Planta 165:232–241

    Article  CAS  Google Scholar 

  • Shahid M, Khan F, Saeed A, Fareed I (2011) Variability of red rot-resistant somaclones of sugarcane genotype S97US297 assessed by RAPD and SSR. Genet Mol Res 10:1831–1849

    Article  PubMed  CAS  Google Scholar 

  • Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    Article  PubMed  CAS  Google Scholar 

  • Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007

    Article  PubMed  CAS  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4:477–486

    Article  PubMed  CAS  Google Scholar 

  • Strader LC, Culler AH, Cohen JD, Bartel B (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol 153: 1577–1586

    Article  PubMed  CAS  Google Scholar 

  • Strader LC, Wheeler DL, Christensen SE, Berens JC, Cohen JD, Rampey RA, Bartel B (2011) Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. Plant Cell 23:984–999

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tocci N, D’Auria FD, Simonetti G, Panella S, Palamara AT, Pasqua G (2012) A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium in vitro roots. Plant Physiol Biochem 57C:54–58

    Article  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inzé D, Van Breusegem F (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  PubMed  CAS  Google Scholar 

  • van der Krieken WM, Breteler H, Visser MHM (1992) The effect of the conversion of indolebutyric acid into indoleacetic acid on root formation on microcuttings of Malus. Plant Cell Physiol 33:709–713

    Google Scholar 

  • Wain R, Wightman F (1954) The growth-regulating activity of certain ω-substituted alkyl carboxylic acids in relation to their β-oxidation within the plant. Proc Royal Soc Lond Ser B 142:525–536

    Article  CAS  Google Scholar 

  • Wiszniewski A, Zhou W, Smith S, Bussell J (2009) Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant Mol Biol 69:503–515

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Xi Z, Zhang Z, Sun Y, Shi Z, Tian W (2009) Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)32+KMnO4 chemiluminescence detection. Talanta 79:216–221

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Davies PJ (1999) Promotion of stem elongation by indole-3-butyric acid in intact plants of Pisum sativum L. Plant Growth Regul 27:157–160

    Article  CAS  Google Scholar 

  • Zolman BK, Bartel B (2004) An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci 101:1786–1791

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156:1323–1337

    PubMed  CAS  Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol 127:1266–1278

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17:3422–3435

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Nyberg M, Bartel B (2007) IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Mol Biol 64:59–72

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180:237–251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (IOS-0845507). The authors gratefully acknowledge Matt Estep for thoughtful discussions on MEGA5 analysis. The authors apologize to all those in the community whose work could not be discussed due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethany K. Zolman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spiess, G.M., Zolman, B.K. (2013). Peroxisomes as a Source of Auxin Signaling Molecules. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_14

Download citation

Publish with us

Policies and ethics