Skip to main content

Comparison of the Thermal Sensors of SEVIRI and MODIS for LST Mapping

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

This study aims to evaluate quantitatively the land surface temperature (LST) from SEVIRI data (Spinning Enhanced Visible and Infrared Imager, onboard MSG-2 satellite) with the MODIS (Moderate Resolution Imaging Spectroradiometer, onboard Terra)-derived LST extracted from the MOD11B1 V5 product. Two SEVIRI-derived LST level-2 products are used for this purpose: the LSTs retrieved using the generalised split-window method with the emissivities estimated using the day/night TISI (Temperature Independent Spectral Indices)-based method and the LSTs generated by the Land Surface Analysis of the Satellite Application Facility. The results show that (1) higher discrepancies are observed during the daytime, especially for bare areas, with a maximum of 5.7 K; (2) these differences are time- and land cover-dependent; (3) these differences strongly depend on the view zenith angle differences; and (4) the two LST retrieval algorithms for SEVIRI present the higher discrepancy for bare areas, with a maximum difference of 6.1 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atitar M, Sobrino JA, Soria G, Wigneron JP, Jimenes-Munoz JC, Julien Y, Belen Ruescas A (2008) Land surface temperature retrieval from SEVIRI/MSG2 data: algorithm and validation. EUMETSAT meteorological satellite conference, Darmstadt (Alemania), 8–12 Sept 2008

    Google Scholar 

  • Becker F, Li ZL (1990a) Towards a local split window method over land surfaces. Int J Remote Sens 11:369–393

    Article  Google Scholar 

  • Becker F, Li ZL (1990b) Temperature independent spectral indices in thermal infrared bands. Remote Sens Environ 32:17–33

    Article  Google Scholar 

  • Caselles V, Sobrino JA (1989) Determination of frosts in orange groves from NOAA-9 AVHRR data. Remote Sens Environ 29:135–146

    Article  Google Scholar 

  • Coll C, Caselles V, Sobrino JA, Valor E (1994) On the atmospheric dependence of the split-window equation for land surface temperature. Int J Remote Sens 15:105–122

    Article  Google Scholar 

  • Del Barrio G, Puigdefabregas J, Sanjuan ME, Stellmes M, Ruiz A (2010) Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens Environ 114:1817–1832

    Article  Google Scholar 

  • Freitas SC, Trigo IF, Bioucas-Dias JM, Göttsche FM (2010) Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE Trans Geosci Remote 48:523–534

    Article  Google Scholar 

  • Gomes JPRT (2007) Late-quaternary landscape dynamics in the Iberian Peninsula and Balearic Islands. Dissertation, University of Porto, Porto

    Google Scholar 

  • Göttsche FM, Olesen FS (2001) Modeling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens Environ 76:337–348

    Article  Google Scholar 

  • Guenther B, Barnes W, Knight E, Barker F, Harnden J, Weber R, Roberto M, Godden G, Montgomery H, Abel P (1995) MODIS calibration: a brief review of the strategy for the at-launch calibration approach. J Atmos Ocean Technol 13:274–285

    Article  Google Scholar 

  • Jiang GM (2007) Retrievals of land surface emissivity and land surface temperature from MSG1-SEVIRI data. Dissertation, University of Strasbourg, Strasbourg

    Google Scholar 

  • Jiang GM, Li ZL (2008) Split-window algorithm for land surface temperature estimation from MSG1-SEVIRI data. Int J Remote Sens 29:6067–6074

    Article  Google Scholar 

  • Jiang GM, Li ZL, Nerry F (2006) Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sens Environ 105:326–340

    Article  Google Scholar 

  • Jiménez-Muñoz JC, Sobrino JA (2003) A generalized single-channel method for retrieving land surface temperature from remote sensing data. J Geophys Res 108:4688–4697. doi:10.1029/2003JD003480

    Google Scholar 

  • Kerr YH, Lagouarde JP, Imbernon J (1992) Accurate land surface temperature retrieval from AVHRR data with the use of an improved split-window algorithm. Remote Sens Environ 41:197–209

    Article  Google Scholar 

  • Li ZL, Peticolin F, Zhang RH (2000) A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data. Sci China Ser E 43:22–33

    Google Scholar 

  • Li ZL, Jia L, Su ZB, Wan Z, Zhang RH (2003) A new approach for retrieving precipitable water from ATSR2 split-window channel data over land area. Int J Remote Sens 24:5059–5117

    Google Scholar 

  • Lucht W, Roujean JL (2000) Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sens Environ 18:343–379

    Article  Google Scholar 

  • Mannstein H (1987) Surface energy budget, surface temperature, and thermal inertia. In: Vaughan RA, Reidel D (eds) Remote sensing applications in meteorology and climatology, vol 201, NATO AS1 series C: math and physical science. A Reidel Publishing Co., Dordrecht, pp 391–410

    Chapter  Google Scholar 

  • McMillin LM (1975) Estimation of sea surface temperature from two infrared window measurements with different absorptions. J Geophys Res 20:5113–5117

    Article  Google Scholar 

  • Mostovoy GV, Filippova MG, King RL, Reddy KR, Kakani VG (2006) Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. Gisci Remote Sens 43:78–110

    Article  Google Scholar 

  • Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z (2005) Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens Environ 94:17–30

    Article  Google Scholar 

  • Ottlé C, Vidal-madjar D (1992) Estimation of land surface temperature with NOAA −9 data. Remote Sens Environ 40:27–41

    Article  Google Scholar 

  • Peres LF, DaCamara CC (2005) Emissivity maps to retrieve land surface temperature from MSG/SEVIRI. IEEE Trans Geosci Remote 43:1834–1844

    Article  Google Scholar 

  • Peres LF, Dacamara CC, Trigo IF, Freitas SC (2010) Synergistic use of the two-temperature and split-window methods for land-surface temperature retrieval. Int J Remote Sens 31:4387–4409

    Article  Google Scholar 

  • Prata A (1993) Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer 1. Theory. J Geophys Res 98:16689–16702

    Article  Google Scholar 

  • Price JC (1983) Estimating surface temperature from satellite thermal infrared data—a simple formulation for the atmospheric effect. Remote Sens Environ 13:353–361

    Article  Google Scholar 

  • Price JC (1984) Land surface temperature measurements from the split window channels of the NOAA 7 AVHRR. J Geophys Res 89:7231–7237

    Article  Google Scholar 

  • Qin ZH, Karnieli A, Berliner A (2001) A mono-window algorithm for retrieving land surface temperature from landsat TM and its application to the Israel-Egypt border region. Int J Remote Sens 22:3719–3746

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1988) The First ISLSCP Field Experiment (FIFE). J Bull Am Meteorol Soc 69:22–27

    Article  Google Scholar 

  • Sobrino JA, Romaguera M (2004) Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens Environ 92:247–254

    Article  Google Scholar 

  • Sobrino JA, Li ZL, Stoll MP, Becker F (1994) Improvements in the split window technique for land surface temperature determination. IEEE Trans Geosci Remote 32:243–253

    Article  Google Scholar 

  • Sobrino JA, Li ZL, Stoll MP, Becker F (1996) Multi-channel and multi-angle methods for estimating sea and land surface temperature with ATSR. Int J Remote Sens 17:2089–2114

    Article  Google Scholar 

  • Sun Y (2008) Retrieval and application of land surface temperature. http://www.geo.utexas.edu/courses/387h/PAPERS/Term%20paper-Sun.pdf. Accessed 10 July 2011

  • Sun YJ, Wang JF, Zhang RH, Gillies RR, Xue Y, Bo YC (2005) Air temperature retrieval from remote sensing data based on thermodynamics. Theor Appl Climatol 80:37–48

    Article  Google Scholar 

  • Tang BH, Li ZL, Bi YY (2009) Estimation of land surface directional emissivity in mid-infrared channel around 4.0 um from MODIS data. Opt Express 17:3173–3182

    Article  Google Scholar 

  • Tran H (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs 8:34–48

    Article  Google Scholar 

  • Wan Z (2008a) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112:59–74

    Article  Google Scholar 

  • Wan Z (2008b) Current status of the MODIS land-surface temperature/emissivity products. In: International workshop on the retrieval and use of land surface temperature: bridging the gaps, Ashville, NC, 7–9 April. http://www.joss.ucar.edu/joss_psg/meetings/Meetings_2008/Bridging_the_Gaps/pdf/Monday_AM/Wan_presentation_ud.pdf. Accessed 15 Oct 2011

  • Wan Z, Dozier J (1996) A generalized split-window method for retrieving land-surface temperature from space. IEEE Trans Geosci Remote 34:892–905

    Article  Google Scholar 

  • Wan Z, Li ZL (1997) A physics-based method for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans Geosci Remote 35:980–996

    Article  Google Scholar 

  • Wan Z, Wang P, Li X (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int J Remote Sens 25:61–72

    Article  Google Scholar 

  • Wang K, Li Z, Cribb M (2006) Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: a new method to determine the Priestley-Taylor parameter. Remote Sens Environ 102:293–305

    Article  Google Scholar 

  • URL1: http://remotesensing.unh.edu/modis

  • URL2: http://bioval.jrc.ec.europa.eu/products/glc2000/products.php

  • URL3: http://landsaf.meteo.pt/

Download references

Acknowledgements

The authors would like to thank Mr. N. Albalat at the University of Strasbourg for providing atmospheric data and Dr. Genming Jiang at Fudan University and Ms. Shi Qiu at the University of Strasbourg for their support in the LST retrieval activities. We also thank EUMETSAT for providing the MSG-2/SEVIRI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Liang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, C., Jiang, X., Li, ZL., Nerry, F. (2013). Comparison of the Thermal Sensors of SEVIRI and MODIS for LST Mapping. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_12

Download citation

Publish with us

Policies and ethics