Skip to main content

The Stem Cell State

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 786))

Abstract

This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Driesch H (1892) The potency of the first two cleavage cells in echinoderm development. Experimental production of partial and double formation (reprinted translation). In: Oppenheimer JM (ed) Foundations of experimental embryology, part 2. Hafner, New York, pp 39–50

    Google Scholar 

  2. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38(5):455–463

    Article  PubMed  CAS  Google Scholar 

  3. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    PubMed  CAS  Google Scholar 

  4. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182(4627):64–65

    Article  PubMed  CAS  Google Scholar 

  5. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72(9):3585–3589

    Article  PubMed  CAS  Google Scholar 

  6. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66

    Article  PubMed  CAS  Google Scholar 

  7. Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven

    Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  10. Maximow A (1909) The lymphocyte as a stem cell common to different blood elements in embryonic development and during the post-fetal life of mammals. Originally in German. Folia Haematol 8:125–134 [English translation (2009) Cell Ther Transplant 1(3):14–18]

    Google Scholar 

  11. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  PubMed  CAS  Google Scholar 

  12. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  PubMed  CAS  Google Scholar 

  13. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638

    Article  PubMed  CAS  Google Scholar 

  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  15. Moore MA, Metcalf D (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18(3):279–296

    Article  PubMed  CAS  Google Scholar 

  16. Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91(24):11298–11302

    Article  PubMed  CAS  Google Scholar 

  17. Simon L, Ekman GC, Kostereva N, Zhang Z et al (2009) Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells 27(7):1666–1675

    Article  PubMed  CAS  Google Scholar 

  18. Snippert HJ, van der Flier LG, Sato T, van Es JH et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    Article  PubMed  CAS  Google Scholar 

  19. Chia W, Somers WG, Wang H (2008) Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J Cell Biol 180(2):267–272

    Article  PubMed  CAS  Google Scholar 

  20. Ryu BY, Orwig KE, Oatley JM, Avarbock MR et al (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24(6):1505–1511

    Article  PubMed  CAS  Google Scholar 

  21. Spradling A, Fuller MT, Braun RE, Yoshida S (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3(11):a002642

    Article  PubMed  Google Scholar 

  22. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  PubMed  CAS  Google Scholar 

  23. Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78(4):219–243

    Article  PubMed  CAS  Google Scholar 

  24. Barker N, van Es JH, Kuipers J, Kujala P et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  PubMed  CAS  Google Scholar 

  25. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    Article  PubMed  CAS  Google Scholar 

  26. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    PubMed  CAS  Google Scholar 

  27. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the drosophila ovary. Science 290(5490):328–330

    Article  PubMed  CAS  Google Scholar 

  28. Hsu YC, Fuchs E (2012) A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13(2):103–114

    Article  PubMed  CAS  Google Scholar 

  29. Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3(1):44–54

    Article  PubMed  CAS  Google Scholar 

  30. Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in drosophila testes. Nat Cell Biol 12(8):806–811

    Article  PubMed  CAS  Google Scholar 

  31. Boyer LA, Plath K, Zeitlinger J, Brambrink T et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    Article  PubMed  CAS  Google Scholar 

  32. Lee TI, Jenner RG, Boyer LA, Guenther MG et al (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125(2):301–313

    Article  PubMed  CAS  Google Scholar 

  33. Jepsen K, Solum D, Zhou T, McEvilly RJ et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168):415–419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary R. Hime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hime, G.R., Abud, H.E. (2013). The Stem Cell State. In: Hime, G., Abud, H. (eds) Transcriptional and Translational Regulation of Stem Cells. Advances in Experimental Medicine and Biology, vol 786. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6621-1_1

Download citation

Publish with us

Policies and ethics