Skip to main content

Hairy Root Culture: An Efficient System for Secondary Metabolite Production

  • Chapter
  • First Online:

Abstract

Plants are a potential source for the discovery of new products of medicinal value and served as lead compounds for drug development. Tremendous efforts have been made to commercialize production of plant metabolites employing plant cell culture in bioreactors, but very few have achieved commercial success. Hairy root culture is an unsurpassed choice for bio-processing system for various root associated pharmaceuticals due to fast growth rate, easy culture, genetic manipulations and most important biochemical stability of neoplastic roots. It serves as a model system for plant metabolism and physiology and utilized as a technical alternative to plant cell suspension culture. Moreover, hairy root culture plays a significant role in design the principle for plant metabolic engineering, germplasm conservation, expression of foreign protein and phytoremedaition. However, its global utilization requires attempts on the establishment of effective and economical scaled up culture that can reduce the consumption, but obtain the biggest benefits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackermann, C. (1977). Pflanzen aus Agrobacterium rhizogenes Tumoren an Nicotiana tabacum. Plant Science Letters, 8, 23–30.

    Google Scholar 

  • Asada, Y., Saito, H., Yoshikawa, T., Sakamoto, K., & Furuya, T. (1993). Biotransformation of 18β-glycyrrhetinic acid by ginseng hairy root culture. Phytochemicals, 34(4), 1049–1052.

    CAS  Google Scholar 

  • Asada, Y., Li, W., & Yoshikawa, T. (1998). Isoprenylated flavonoids from hairy root cultures of Glycyrrhiza glabra. Phytochemistry, 47, 389–392.

    CAS  Google Scholar 

  • Ayora-Talavera, T., Chappell, J., Lozoya-Gloria, E., & Loyola-Vargas, V. M. (2002). Over-­expression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-­methylglutaryl-CoA reductase gene. Applied Biochemistry and Biotechnology, 97, 135–145.

    CAS  Google Scholar 

  • Azlan, G. J., Marziah, M., Radzali, M., & Johari, R. (2002). Establishment of Physalis minima hairy root culture for the production of physalins. Plant Cell Tissue and Organ Culture, 69, 271–278.

    Google Scholar 

  • Bakkali, A. T., Jaziri, M., Foriers, A., Vander Heyden, Y., Vanhaelen, M., & Homes, J. (1997). Lawsone accumulation in normal and transformed cultures of henna, Lawsonia inermis. Plant Cell Tissue and Organ Culture, 51, 83–87.

    Google Scholar 

  • Balandrin, M. F., Klocke, J. A., Wurtele, E. S., & Bollinger, W. H. (1985). Natural plant chemicals: Sources of industrial and medicinal material. Science, 228, 1154–1160.

    CAS  Google Scholar 

  • Banerjee, S., Rahman, L., Uniyal, G. C., & Ahuja, P. S. (1998). Enhanced production of valepotriates by Agrobacterium rhizogenes induced hairy root cultures of Valeriana wallichi DC. Plant Science, 131, 203–208.

    CAS  Google Scholar 

  • Bastian, P., Chavarria-Krauser, A., Engwer, C., Jager, W., Marnach, S., & Ptashnyk, M. (2008). Modeling in vitro growth of dense root networks. Journal of Theoretical Biology, 254, 99–109.

    Google Scholar 

  • Berkov, S., Pavlov, A., Kovatcheva, P., Stanimirova, P., & Philipov, S. (2003). Alkaloid spectrum in diploid and tetraploid hairy root cultures of Datura stramonium. Zeitschrift Für Naturforschung, 58, 42–46.

    CAS  Google Scholar 

  • Berlin, J., Beier, H., Fecker, L., Forche, E., Noe, W., Sasse, F., Schiel, O., & Wray, V. (1985). Conventional and new approaches to increase the alkaloid production of plant cell cultures. In K. H. Neumann, W. Barz, & E. Reinhard (Eds.), Primary and secondary metabolism of plant cell cultures (pp. 272–280). Berlin: Springer.

    Google Scholar 

  • Bhadra, R., & Shanks, J. V. (1997). Transient studies of nutrient uptake, growth and indole alkaloid accumulation in heterotrophic cultures of hairy roots of Catharanthus roseus. Biotechnology and Bioengineering, 55, 527–534.

    CAS  Google Scholar 

  • Bhadra, R., Morgan, J. A., & Shanks, J. V. (1998). Transient studies of light-adapted cultures of hairy roots of Catharanthus roseus: Growth and indole alkaloid accumulation. Biotechnology and Bioengineering, 60, 670–678.

    CAS  Google Scholar 

  • Bhadra, R., Wayment, D. G., Hughes, J. B., & Shanks, J. V. (1999). Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environmental Science and Technology, 33, 446–452.

    CAS  Google Scholar 

  • Binns, A. N., & Thomashow, M. F. (1988). Cell biology of Agrobacterium infection and transformation of plants. Annual Review of Microbiology, 42, 575–606.

    CAS  Google Scholar 

  • Cain, C. C., Saslowsky, D. E., Walker, R. A., & Shirley, B. W. (1997). Expression of chalcone synthase and chalcone isomerase proteins in Arabidposis seedlings. Plant Molecular Biology, 35, 377–381.

    CAS  Google Scholar 

  • Charlwood, B. V., & Charlwood, K. A. (1991). Terpenoid production in plant cell cultures. In J. B. Harborne & F. A. Thomas-Barberan (Eds.), Ecological chemistry and biochemistry of plant terpenoids (pp. 95–132). Oxford: Clarendon.

    Google Scholar 

  • Chinou, I. (2008). Primary and secondary metabolites and their biological activity. In M. Waksmundzka-Hajnos, J. Sherma, & T. Kowalska (Eds.), Thin layer chromatography in photochemistry. Boca Raton: CRC Press.

    Google Scholar 

  • Cho, H. J., & Wildholm, J. M. (2002). Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tissue and Organ Culture, 69, 259–269.

    CAS  Google Scholar 

  • Choi, D. W., et al. (2005). Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports, 23, 557–566.

    CAS  Google Scholar 

  • Condori, J., Sivakumar, G., Hubstenberger, J., Dolan, M., Sobolev, V., & Medina-Boliver, F. (2010). Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-­3 in hairy root cultures of peanut: Effects of culture medium and growth stage. Plant Physiology and Biochemistry, 48, 310–318.

    CAS  Google Scholar 

  • Deboer, K. D., Lye, J. C., Aitken, C. D., Su, A. K., & Hamill, J. D. (2009). The A622 gene in Nicotiana glauca (tree tobacco): Evidence for a functional role in pyridine alkaloid synthesis. Plant Molecular Biology, 69, 299–312.

    CAS  Google Scholar 

  • Dechaux, C., & Boitel-Conti, M. (2005). A strategy for over accumulation of scopolamine in Datura innoxia hairy root culture. Acta Biologica Coviensia Series Botanica, 47, 101–107.

    Google Scholar 

  • De Jesus-Gonzalez, L., & Weathers, P. J. (2003). Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Reports, 21(8), 809–813.

    Google Scholar 

  • Dhakulkar, S., Ganapathi, T. R., Bhargava, S., & Bapat, V. A. (2005). Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Science, 169, 812–818.

    CAS  Google Scholar 

  • Dixit, A. K., & Vaidya, S. (2010). Agrobacterium rhizogenes induced hairy root development and its effect on production of glycyrrhizin in Abrus precatorious (L.). International Journal of Current Research, 6, 033–038.

    Google Scholar 

  • Doran, P. M. (2006). Foreign protein degradation and instability in plants and plant tissue cultures. Trends in Biotechnology, 24, 426–432.

    CAS  Google Scholar 

  • Flores, H. E., Dai, Y. R., Freyer, A. J., & Michaels, P. J. (1994). Biotransformation of butylated hydroxytoluene in ‘hairy root’ cultures. Plant Physiology and Biochemistry, 32, 511–519.

    CAS  Google Scholar 

  • Flores, H. E., & Filner, P. (1985). Metabolic relationships of putrescine, GABA, and alkaloids in cell and root cultures of Solanaceae. In K. H. Neumann, W. Barz, & E. Reinhard (Eds.), Primary and secondary metabolism of plant cell cultures (pp. 174–186). Berlin: Springer.

    Google Scholar 

  • Flores, H. E., Vivanco, J. M., & Loyola-Vargas, V. M. (1999). Radicle biochemistry: The biology of root-specific metabolism. Trends in Plant Science, 4, 220–226.

    Google Scholar 

  • Fu, C. X., Zhao, D. X., Xue, X. F., Jin, Z. P., & Ma, F. S. (2005). Transformation of Saussurea involucrate by Agrobacterium rhizogenes: Hairy root induction and syringing production. Process Biochemistry, 40, 3789–3794.

    CAS  Google Scholar 

  • Fukui, H., Hasan, A. F. M. F., Ueoka, T., & Kyo, M. (1998). Formation and secretion of a new brown bezoquinone by hairy root cultures of Lithospermum erythrorhizon. Phytochemistry, 47, 1037–1039.

    CAS  Google Scholar 

  • Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soyabean root cells. Experimental Cell Research, 50, 151–158.

    CAS  Google Scholar 

  • Gaume, A., et al. (2003). Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Reports, 22, 344–349.

    Google Scholar 

  • Gelvin, S. B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 223–256.

    CAS  Google Scholar 

  • Georgiev, M., Heinrich, M., Kerns, G., Pavlov, A., & Bley, T. (2006). Production of iridoids and phenolics by transformed harpagophytum procumbens root cultures. Engineering in Life Sciences, 6(6), 593–596.

    CAS  Google Scholar 

  • Giovanni, A., Pecchioni, N., Rabaglio, M., & Allavena, A. (1997). Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cellular and Developmental Biology-Plant, 33, 101–106.

    Google Scholar 

  • Giri, A., & Narasu, M. L. (2000). Transgenic hairy roots recent trends and applications. Biotechnology Advances, 18, 1–22.

    CAS  Google Scholar 

  • Giri, A., Banerjee, S., Ahuja, P. S., & Giri, C. C. (1997). Production of hairy roots in Aconitum heterophyllum wall. using Agrobacterium rhizogenes. In Vitro Cellular and Developmental Biology-Plant, 33, 280–284.

    Google Scholar 

  • Giri, A., Ravindra, S. T., Dhingra, V., & Narasu, M. L. (2001). Influence of different strains of Agrobacterium rhizogenes on induction of hairy root and artemisinin production in Artemisia annua. Current Science, 81, 378–382.

    CAS  Google Scholar 

  • Han, K. H., Kethley, D. E., Davis, J. M., & Gordon, M. P. (1993). Regeneration of a transgenic woody legume (Robonia pseudoacacia L. black locust) and morphological alternations induced by Agrobacterium rhizogenes-mediated transformation. Plant Science, 88, 149–157.

    Google Scholar 

  • Hyon, K. J. I., & Yoo, Y. J. E. (2002). Optimization of SOD biosynthesis by controlling sucrose concentration in the culture of carrot hairy root. Journal of Microbiology and Biotechnology, 12, 617–621.

    Google Scholar 

  • Jaziri, K. H., Shimomura, K., Yoshimatsu, K., Fauconnier, M. L., Marlier, M., & Homes, J. (1995). Establishment of normal and transformed root cultures of Artemisia aanua L. for artemisinin production. Journal of Plant Physiology, 145, 175–177.

    CAS  Google Scholar 

  • Jeong, G.-T., Park, D.-H., Ryu, H.-W., Hwang, B., & Woo, J.-C. (2004). Effects of inoculum conditions on growth of hairy roots of Panax ginseng C.A. Meyer. Applied Biochemistry and Biotechnology, 113–116, 1193–1203.

    Google Scholar 

  • Jin, U. H., Chun, J. A., Han, M. O., Lee, J. W., Yi, Y. B., Lee, S. W., & Chung, C. H. (2005). Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Process Biochemistry, 40, 3754–3762.

    CAS  Google Scholar 

  • Jouhikainen, K., Lindgren, L., Jokelainen, T., Hiltunen, R., Teeri, T. H., & Oksman-Caldentey, K. M. (1999). Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta, 208, 545–551.

    CAS  Google Scholar 

  • Kajikawa, M., Hirai, N., & Hashimoto, T. (2009). A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Molecular Biology, 69, 287–298.

    CAS  Google Scholar 

  • Kawaguchi, K., Hirotani, M., Yoshikawa, T., & Furuya, T. (1990). Biotransformation of digitoxigenin by ginseng hairy root cultures. Phytochemistry, 29(3), 837–843.

    CAS  Google Scholar 

  • Khas, J., Burkhard, J., Demnerova, K., Kostal, J., Macek, T., Mackovq, M., & Pazlarova, J. (1997). Perspective in biodegradation of alkanes and PCBs. Pure and Applied Chemistry, 69, 2357–2369.

    Google Scholar 

  • Kim, Y. H., & Yoo, Y. J. (1996). Peroxidase production from carrot hairy root cell culture. Enzyme and Microbial Technology, 18, 531–535.

    CAS  Google Scholar 

  • Kim, J. S., Lee, S. Y., & Park, S. U. (2008). Resveratrol production in hairy root culture of peanut, Arachis hypogea L. transformed with different Agrobacterium rhizogenes strains. African Journal of Biotechnology, 7, 3785–3787.

    Google Scholar 

  • Kim, Y. K., Xu, H., Park, W. T., Park, N. I. I., Lee, S. Y., & Park, S. U. (2010). Genetic transformation of rutin in transformed root cultures. Australian Journal of Crop Science, 4, 485–490.

    CAS  Google Scholar 

  • Kittipongpatana, N., Hock, R. S., & Porter, J. R. (1998). Production of solasodine by hairy root, callus, and cell suspension cultures of Solanum aviculare Forst. Plant Cell, Tissue and Organ Culture, 52, 133–143.

    CAS  Google Scholar 

  • Koehle, A., Sommer, S., Yazaki, K., et al. (2002). High level expression of solasodine by hairy root callus, and cell suspension cultures of Solanum aviculare Forst. Plant Cell Tissue and Organ Culture, 52, 133–143.

    Google Scholar 

  • Komaraiah, P., et al. (2003). Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnology Letters, 25, 593–597.

    CAS  Google Scholar 

  • Krolicka, A., Staniszewska, I., Bielawski, K., Malinski, E., Szafranek, J., & Lojkowska, E. (2001). Establishment of hairy root cultures of Ammi majus. Plant Science, 160, 259–264.

    CAS  Google Scholar 

  • Kumagi, H., & Kouchi, H. (2003). Gene silencing by expression by hairpin RNA in Lotus japonicas roots and root nodules. Molecular Plant-Microbe Interactions, 16, 663–668.

    Google Scholar 

  • Kumar, V., Jones, B., & Davey, M. R. (1991). Transformation by Agrobacterium rhizogenes of transgenic shoots of the wild soyabean Glycine argyrea. Plant Cell Reports, 10, 135–138.

    CAS  Google Scholar 

  • Lan, X., & Quan, H. (2010). Hairy root culture of Przewalskia tangutica for enhanced pro­duction of pharmaceutical tropane alkaloids. Journal of Medicinal Plants Research, 4, 1477–1481.

    CAS  Google Scholar 

  • Lavania, U. (2005). Genomic and ploidy manipulation for enhanced production of phyto-­pharmaceuticals. Plant Genetic Resources, 3, 170–177.

    CAS  Google Scholar 

  • Le Flem-Bonhomme, V., Laurain-Mattar, D., & Fliniaux, M. A. (2004). Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant by A. rhizogenes LBA 9402. Planta, 218, 890–893.

    Google Scholar 

  • Lee, J. H., Loc, N. H., Kwon, T. H., & Yang, M. S. (2004). Partitioning of recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) from plant cell suspension culture in PEG/sodium phosphate aqueous two-phase systems. Biotechnology and Bioprocess Engineering, 9, 12–16.

    CAS  Google Scholar 

  • Li, W., Asada, Y., & Yoshikawa, T. (1998). Antimicrobial flavonoids from Glycyrrhiza glabra hairy root cultures. Planta Medica, 64, 746–747.

    CAS  Google Scholar 

  • Li, W., Koike, K., Asada, Y., Hirotani, M., Rui, H., Yoshikawa, T., & Nikaido, T. (2002). Flavonoids from Glycyrrhiza pallidiflora hairy root cultures. Phytochemistry, 60, 351–355.

    CAS  Google Scholar 

  • Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1999). Development of a nutrient and bioreactor for growth of hairy roots. In Vitro Cellular and Developmental Biology-Plant, 35, 271–274.

    Google Scholar 

  • Lu, M. B., Wong, H. L., & Teng, W. L. (2001). Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Reports, 20, 674–677.

    CAS  Google Scholar 

  • Mahagamasekera, M. G. P., & Doran, P. M. (1998). Intergeneric co-culture of genetically transformed organs for the production of scoplolamine. Phytochemistry, 47, 17–25.

    CAS  Google Scholar 

  • Mavituna, F. (1992). Applications of plant biotechnology in industry and agriculture. In F. Vardar-­Sukan & S. S. Sukan (Eds.), Recent advances in biotechnology (pp. 209–226). Boston: Kluwer Academic.

    Google Scholar 

  • Medina-Bolivar, F., et al. (2003). A non-toxin lectin for antigen delivery of plant-based mucosal vaccines. Vaccine, 21, 997–1005.

    CAS  Google Scholar 

  • Menzel, G., Harloff, H. J., & Jung, C. (2003). Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Applied Microbiology and Biotechnology, 60, 571–576.

    CAS  Google Scholar 

  • Moyano, E., Jouhikainen, K., Tammela, P., Palaźon, J., Cusido, R. M., Piñol, M. T., Teeri, T. H., & Oksman-Caldentey, K. M. (2003). Effect of pmt gene over-expression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. Journal of Experimental Botany, 54, 203–211.

    CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.

    CAS  Google Scholar 

  • Nakanishi, F., et al. (2005). Characterization of lucidin formation in Rubia tinctorum L. Plant Physiology and Biochemistry, 43, 921–928.

    CAS  Google Scholar 

  • Nakashimada, Y., Uozemi, N., & Kobayashi, T. (1995). Production of plantlets for use as artificial seeds from horseradish hairy roots fragmented in a blender. Journal of Fermentation and Bioengineering, 79, 458–464.

    CAS  Google Scholar 

  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M., & Lepiniec, I. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 13, 2099–2114.

    CAS  Google Scholar 

  • Nguyen, C., Bourgaud, F., Forlot, P., & Guckert, A. (1992). Establishment of hairy root cultures of Psoralea species. Plant Cell Reports, 11, 424–427.

    Google Scholar 

  • Nilsson, O., & Olsson, O. (1997). Getting to the root: The role of the Agrobacterium rhizogenes rol genes in formation of hairy root. Physiologia Plantarum, 100, 403–473.

    Google Scholar 

  • Nin, S., Bennici, A., Roselli, G., Mariotti, D., Schiff, S., & Magherini, R. (1997). Agrobacterium-­mediated transformation of Atremisia absinthium L. (wornwood) and production of secondary metabolites. Plant Cell Reports, 16, 725–730.

    CAS  Google Scholar 

  • Nishikawa, K., & Ishimaru, K. (1997). Flavonoids in root cultures of Scutellaria baicalensis. Journal of Plant Physiology, 151, 633–636.

    CAS  Google Scholar 

  • Ohkawa, H., Kamda, H., Sudo, H., & Harada, H. (1989). Effects of gibberellic acid on hairy root growth in Datura innoxia. Journal of Plant Physiology, 134, 633–636.

    CAS  Google Scholar 

  • Oksman-Caldentey, K. M., & Strauss, A. (1986). A somaclonal variation of scopolamine content in protoplast-derived cell culture clones of Hyoscyamus muticus. Planta Medica, 52, 6–12.

    Google Scholar 

  • Ono, N. N., & Tian, L. (2011). The multiplicity of hairy root cultures: Prolific possibilities. Plant Science, 180(3), 439–446.

    CAS  Google Scholar 

  • Ooms, G., Twell, D., Bossen, M. E., Hoge, J. H. C., & Burrell, M. M. (1986). Development regulation of Ri T DNA gene expression in root, shoots and tubers of transformed potato (Solanum tuberosum cv. Desiree). Plant Molecular Biology, 6, 321–330.

    CAS  Google Scholar 

  • Palazon, J., et al. (2003). Elicitation of different Panax ginseng-transformed root phenotypes for an improved ginsenoside production. Plant Physiology and Biochemistry, 41, 1019–1025.

    CAS  Google Scholar 

  • Pang, Y., Peel, G. J., Sharma, S. B., Tang, Y., & Dixon, R. A. (2008). A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 105, 14210–14215.

    CAS  Google Scholar 

  • Park, S.-U., & Facchini, P. J. (2000). Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. Journal of Experimental Botany, 51, 1005–1016.

    CAS  Google Scholar 

  • Parr, A. J. (1989). The production of secondary metabolites by plant cell cultures. Journal of Biotechnology, 10, 1–25.

    CAS  Google Scholar 

  • Pavlov, A., Georgiev, V., & Kovatcheva, P. (2002a). Relationship between type and age of inoculum and betalains biosynthesis by B. vulgaris hairy root culture. Biotechnology Letters, 25, 307–309.

    Google Scholar 

  • Pavlov, A., Kovatcheva, P., Georgiev, V., Koleva, I., & Ilieva, M. (2002b). Biosynthesis and radical scavenging activity of betalanins during the cultivation of Red beet (Beta Vulagris) hairy root cultures. Zeitschrift für Naturforschung, 57, 640–644.

    CAS  Google Scholar 

  • Pavlov, A., Georgiev, V., & Kovatcheva, P. (2003). Relationship between type and age of the inoculum cultures and betalains biosynthesis by Beta vulgaris hairy root culture. Biotechnology Letters, 25(4), 307–309.

    CAS  Google Scholar 

  • Pavlov, A., Berkov, S., Weber, J., & Bley, T. (2009). Hyoscyamine biosynthesis in Datura stramonium hairy root in vitro systems with different ploidy levels. Applied Biochemistry and Biotechnology, 157, 210–225.

    CAS  Google Scholar 

  • Peebles, C. A., Sander, G. W., Li, M., Shanks, J. V., & San, K. Y. (2009). Five year maintenance of the inducible expression of anthranilacte synthase in Catharanthus roseus hairy roots. Biotechnology and Bioengineering, 102, 1521–1525.

    CAS  Google Scholar 

  • Petit, A., David, C., Dahl, G. A., Ellis, J. G., Guyon, P., Casse-Delbart, F., & Tempe, A. J. (1983). Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Molecular and General Genetics, 190, 204–214.

    CAS  Google Scholar 

  • Phunchindawan, M., Hirata, K., Sakai, A., & Miyamoto, K. (1997). Cryopreservation of encapsulated shoot primordial induced in horse radish (Armoracia rusticana) hairy root cultures. Plant Cell Reports, 16, 469–473.

    CAS  Google Scholar 

  • Prakash, O., Mehrotra, S., Krishna, A., & Mishra, B. (2010). A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. Journal of Theoretical Biology, 265, 579–585.

    CAS  Google Scholar 

  • Rahman, L., Ikenaga, T., & Kitamura, Y. (2004). Penicillin derivatives induce chemical structure-­dependent root development, and application for plant transformation. Plant Cell Reports, 22, 668–677.

    Google Scholar 

  • Ralston, L., Subramanian, S., Matsuno, M., & Yu, O. (2005). Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soyabean type I and type II chalcone isomerases. Plant Physiology, 137, 1375–1388.

    CAS  Google Scholar 

  • Ramachandra, R. S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153.

    Google Scholar 

  • Richter, U., Rothe, G., Fabian, A. K., Rahfeld, B., & Dräger, B. (2005). Over-expression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. Journal of Experimental Botany, 56, 645–652.

    CAS  Google Scholar 

  • Riker, A. J., Banpield, W. M., Wright, W. H., Knitt, G. W., & Sagen, H. E. (1930). Studies on infectitious hairy root of nursery apple trees. Journal of Agriculture Research, 41, 507–540.

    Google Scholar 

  • Rischer, H., et al. (2006). Gene-to-metabolite networks for terpene indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 5614–5619.

    CAS  Google Scholar 

  • Rokem, J. S., & Goldberg, I. (1985). Secondary metabolites from plant cell suspension cultures: methods for yield improvement in advances in biotechnological processes (Vol. 4, pp. 241–274). New York: Alam R Liss Inc.

    Google Scholar 

  • Rothe, G., Garske, U., & Draeger, B. (2001). Calystegines in root cultures of Atropa belladonna respond to sucrose, not to elicitation. Plant Science, 160, 1043–1053.

    CAS  Google Scholar 

  • Sato, F., Hashimoto, T., Hachiya, A., Tamura, K., Choi, K., Morishige, T., Fujimoto, H., & Yamada, Y. (2001). Metabolic engineering of plant alkaloid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 367–372.

    CAS  Google Scholar 

  • Seki, H., et al. (2005). Hairy root-activation tagging: A high-throughput system for activation tagging in transformed hairy roots. Plant Molecular Biology, 59, 793–807.

    CAS  Google Scholar 

  • Sevon, N., & Oksman-Caldentey, K.-M. (2002). Agrobacterium rhizogenes-mediated transformation root cultures as a source of alkaloid. Planta Medica, 68, 859–868.

    CAS  Google Scholar 

  • Sharp, J. M., & Doarn, P. M. (2001). Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnology Progress, 17, 979–992.

    CAS  Google Scholar 

  • Shen, W. H., Petit, A., Guern, J., & Tempe, J. (1988). Hairy roots are more sensitive to auxin than normal roots. Proceedings of the National Academy of Sciences of the United States of America, 35, 3417–3421.

    Google Scholar 

  • Shinde, A., Malpathak, N., & Fulzele, D. (2010). Impact of nutrient components on production of the phytoestrogens daidzein and genistein by hairy roots of Psoralea corylifolia. Journal of Natural Medicines, 64, 346–353.

    CAS  Google Scholar 

  • Shul’ts, E. E., Petrova, T. N., Shakirov, M. M., Chernyak, E. I., & Tolstikov, G. A. (2000). Flavonoids of roots of Glycyrrhiza uralensis growing in Siberia. Chemistry of Natural Compounds, 36, 362–368.

    Google Scholar 

  • Sivakumar, G. (2006). Bioreactor technology: A novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnology Journal, 1, 1419–1427.

    CAS  Google Scholar 

  • Sivakumar, G., Yu, K. W., Hahn, E. J., & Pack, K. Y. (2005). Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Current Science, 89, 641–649.

    CAS  Google Scholar 

  • Sivanesan, I., & Jeong, B. R. (2009). Induction and establishment of adventitious and hairy root cultures of Plumbago zeylanica L. African Journal of Biotechnology, 8(20), 5294–5300.

    CAS  Google Scholar 

  • Srivastava, S., & Srivastava, A. K. (2007). Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology, 27, 29–43.

    CAS  Google Scholar 

  • Stewart, F. C., Rolfs, F. M., & Hall, F. H. (1900). A fruit disease survey of western New York in 1900. New York State Agricultural Experiment Station Technical Bulletin, 191, 291–331.

    Google Scholar 

  • Subruto, S. E., Kwok, K. H., Hamid, J. D., & Doran, P. M. (1996). Co-culture of genetically transformed roots and shoots for synthesis, translocation, and biotransformation of secondary metabolites. Biotechnology and Bioengineering, 49, 481–494.

    Google Scholar 

  • Sudha, C. G., Obul Reddy, B., Ravishankar, G. A., & Seeni, S. (2003). Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnology Letters, 25, 631–636.

    CAS  Google Scholar 

  • Sung, L.-S., & Huang, S.-Y. (2000). Median optimization of transformed root cultures of Stizolobium hassjoo producing I-DOPA with response surface methodology. Biotechnology Progress, 16, 1135–1140.

    CAS  Google Scholar 

  • Sung, L.-S., & Huang, S.-Y. (2006). Lateral root bridging as a strategy to enhance L-DOPA production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnology and Bioengineering, 94(3), 441–447.

    CAS  Google Scholar 

  • Thorup, J. E., McDonald, K. A., Jackman, A. P., Bhatia, N., & Dandekar, A. M. (1994). Ribosome-­inactivating protein production from Trichosanthes kirilowii plant cell cultures. Biotechnology Progress, 10, 345–352.

    CAS  Google Scholar 

  • Trick, H. N., & Finer, J. J. (1997). SAAT: Sonication-assisted Agrobacterium-mediated transformation. Transgenic Research, 6, 329–336.

    CAS  Google Scholar 

  • Uozumi, N. (2004). Large-scale production of hairy root. Advances in Biochemical Engineering/Biotechnology, 91, 75–103.

    CAS  Google Scholar 

  • Ushiyana, M., & Furuya, T. (1989). Glycosylation of phenolic compounds by root cultures of Panax ginseng. Phytochemistry, 28, 3009–3013.

    Google Scholar 

  • Wallaart, T. E., Pras, N., & Quax, W. J. (1999). Isolation and identification of dihydroartemisinic acid hydro peroxide from Artemisia annua: A novel biosynthetic precursor of artemisinin. Journal of Natural Products, 62, 1160–1162.

    CAS  Google Scholar 

  • Weathers, P. J., Bunk, G., & McCoy, M. C. (2005). The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cellular and Developmental Biology-Plant, 41(1), 47–53.

    CAS  Google Scholar 

  • Weathers, P. J., Hemmavanh, D. D., Walcerz, D. B., & Cheetham, R. D. (1997). Interactive effects of nitrate and phosphate salts, sucrose and inoculums culture age on growth and sesquiterpene production in Artemisia annua hairy root cultures. In Vitro Cellular and Developmental Biology-Plant, 33, 306–312.

    CAS  Google Scholar 

  • Wilhelmson, A., Hakkinen, S. T., Kallio, P. T., Oksman-Caldentey, K.-M., & Nuutila, A. M. (2006). Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Biotechnology Progress, 22, 350–358.

    CAS  Google Scholar 

  • Wilson, P. D. G., Hilton, M. G., Robins, R. J., & Rhodes, M. J. C. (1987). Fermentation studies of transformed root cultures. In G. W. Moody & P. B. Baker (Eds.), Bioreactors and biotransformation (pp. 38–51). London: Elsevier.

    Google Scholar 

  • Wink, M., Alfermann, A. W., Franke, R., Wetterauer, B., Distl, M., Windhovel, J., Krohn, O., Fuss, E., Garden, H., Mohagheghzadeh, A., Wildi, E., & Ripplinger, P. (2005). Sustainable bioproduction of phyto-chemicals by plant in vitro cultures: Anticancer agents. Plant Genetic Resources, 3, 90–100.

    CAS  Google Scholar 

  • Wongsamuth, R., & Doran, P. M. (1997). Production of monoclonal antibodies by tobacco hairy roots. Biotechnology and Bioengineering, 54, 401–415.

    CAS  Google Scholar 

  • Xie, D. Y., Zou, Z. R., Ye, H. C., Li, G. F., & Guo, Z. C. (2001). Selection of hairy root clones of Artemisia annua L. for artemisinin production. Israel Journal of Plant Sciences, 49, 129–134.

    CAS  Google Scholar 

  • Xu, Z. Q., & Jia, J. F. (1996). The reduction of chromosome number and the loss of regeneration ability during subculture of hairy root cultures of Onobrychis viciaefolia transformed by Agrobacterium rhizogenes A4. Plant Sciences, 120, 107–112.

    CAS  Google Scholar 

  • Yang, Y. K. (2010). Exogenous auxins and polyamines enhance growth and rosmarinic acid production in hairy root cultures of Nepeta cataria L. Plant Omics, 3(6), 190–193.

    CAS  Google Scholar 

  • Yaoya, S., et al. (2004). Umbelliferone released from hairy root cultures of Pharabitis nil treated with copper sulfate and its subsequent glycosylation. Bioscience, Biotechnology, and Biochemistry, 68, 1837–1841.

    CAS  Google Scholar 

  • Yazaki, K., Sugiyama, A., Morita, M., & Shitan, N. (2008). Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochemistry Reviews, 7, 513–524.

    CAS  Google Scholar 

  • Yoshikawa, T., & Furuya, T. (1987). Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Reports, 6(6), 449–453.

    CAS  Google Scholar 

  • Yoshimatsu, K., Yamaguchi, H., & Shimomura, K. (1996). Traits of Panax ginseng hairy roots after cold storage and cryopreservation. Plant Cell Reports, 15, 555–560.

    CAS  Google Scholar 

  • Yun, D. J., Hashimoto, T., & Yamada, Y. (1992). Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with an improved alkaloid composition. Proceedings of the National Academy of Sciences of the United States of America, 89, 11799–11803.

    CAS  Google Scholar 

  • Zhang, L., Ding, R., Chai, Y., Bonfill, M., Moyano, E., Oksman-Caldentey, K. M., Xu, T., Pi, Y., Wang, Z., Zhang, H., Kai, G., Liao, Z., Sun, X., & Tang, K. (2004). Engineering tropane biosynthetic in Hyoscyamus niger hairy root cultures. Proceedings of the National Academy of Sciences of the United States of America, 101, 6786–6791.

    CAS  Google Scholar 

  • Zhang, L., Kai, G. Y., LU, B. B., Zhang, H. M., Tang, K. X., Jiang, J. H., & Chen, W. S. (2005). Metabolic engineering of tropane alkaloid biosynthesis in plants. Journal of Integrative Plant Biology, 47, 136–143.

    CAS  Google Scholar 

  • Zhang, H.-C., Liu, J.-M., Lu, H.-Y., & Gao, S.-L. (2009). Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Reports, 28, 1205–1213.

    CAS  Google Scholar 

  • Zhou, Y., Hirotani, M., Yoshikava, T., & Furuya, T. (1997). Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochemistry, 44, 83–87.

    CAS  Google Scholar 

Download references

Acknowledgment 

Dr. Anwar Shahzad gratefully acknowledges the financial support provided by the Council of Science and Technology, Uttar Pradesh (Project No. CST/D3836) and UGC (Project No. 39-369/2010). Dr. Shiwali Sharma is thankful to UGC, for the award of BSR Fellowship in Science (1st April 2010) for providing research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Glossary

Agrobacterium

Agrobacterium is a genus of Gram-negative bacteria established by H. J. Conn that uses horizontal gene transfer to cause tumors in plants. Agrobacterium is well known for its ability to transfer DNA between itself and plants, and for this reason it has become an important tool for genetic engineering.

Plasmid

An extra-chromosomal, autonomous circular DNA molecule found in certain bacteria, capable of autonomous replication. Plasmids can transfer genes between bacteria and are important tools of transformation.

T-DNA

Transferred DNA of the tumor-inducing (Ti) plasmid of some species of bacteria such as Agrobacterium tumefaciens and Agrobacterium rhizogenes. It derives its name from the fact that the bacterium transfers this DNA fragment into the host plant’s nuclear DNA genome.

Hairy root

A phase of crown gall (especially in apples) during which there is abnormal development of fine fibrous roots.

Secondary metabolite

Organic compounds that are not directly involved in the normal growth, development, or reproduction of an organism. Secondary metabolites often play an important role in plant defense against herbivory and other interspecies defenses. Humans use secondary metabolites as medicines, flavorings, and recreational drugs.

Phytoremediation

The treatment of environmental problems (bioremediation) through the use of plants that mitigate the environmental problem without the need to excavate the contaminant material and dispose of it elsewhere.

Opines

Low molecular weight compounds found in plant crown gall tumors or hairy root tumors produced by parasitic bacteria of the genus Agrobacterium. Opine biosynthesis is catalyzed by specific enzymes encoded by genes contained in a small segment of DNA (known as the T-DNA, for ‘transfer DNA’), which is part of the Ti plasmid, inserted by the bacterium into the plant genome. The opines are used by the bacterium as an important source of nitrogen and energy. Each strain of Agrobacterium induces and catabolizes a specific set of opines.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharma, S., Shahzad, A., Sahai, A. (2013). Hairy Root Culture: An Efficient System for Secondary Metabolite Production. In: Shahid, M., Shahzad, A., Malik, A., Sahai, A. (eds) Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6603-7_3

Download citation

Publish with us

Policies and ethics