Skip to main content

Optimal Design of RC Frames Using Nonlinear Inelastic Analysis

  • Chapter
Book cover Computational Methods in Earthquake Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 30))

Abstract

Recent earthquakes, especially those in Chile (2010) and Christchurch (2011), have demonstrated the unexpected performance of buildings designed according modern seismic design codes. These incidents strengthen the cause for moving towards performance-based design codes rather than serviceability and strength design. This chapter deals with optimal design of RC frames, a widely used structural type around the world, considering both the initial cost and structural performance as problem objectives. Initial cost comprises the total cost of materials and workmanship for structural components, while structural performance is measured by a two-level approach. First, each design is checked for acceptability according to existing codes, and next performance is quantified in terms of maximum interstory drift obtained from nonlinear inelastic dynamic analysis. This multi-objective, multi-level approach allows one to investigate the implications of the selection of design parameters on the seismic performance while minimizing the initial cost and satisfying the design criteria. The results suggest that structural performance varies significantly within the acceptable limits of design codes and lower initial cost could be achieved for similar structural performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ATC (1996) Seismic evaluation and retrofit of concrete buildings. Report ATC-40, Applied Technology Council

    Google Scholar 

  2. FEMA (1997) NEHRP guidelines for the seismic rehabilitation of buildings, FEMA 273. Federal Emergency Management Agency, Washington

    Google Scholar 

  3. FEMA (2000) Prestandard and commentary for the seismic rehabilitation of buildings, FEMA 356. Federal Emergency Management Agency, Washington

    Google Scholar 

  4. ASCE/SEI (2007) Seismic rehabilitation of existing buildings. American Society of Civil Engineers, ASCE/SEI 41-06, Reston

    Google Scholar 

  5. Feng TT, Arora JS, Haug EJ (1977) Optimal structural design under dynamic loads. Int J Numer Methods Eng 11(1):39–52

    Article  MathSciNet  MATH  Google Scholar 

  6. Cameron GE, Chan CM, Xu LEI, Grierson DE (1992) Alternative methods for the optimal design of slender steel frameworks. Comput Struct 44(4):735–741

    Article  MATH  Google Scholar 

  7. Camp C, Pezeshk S, Cao G (1998) Optimized design of two-dimensional structures using a genetic algorithm. J Struct Eng 124(5):551–559

    Article  Google Scholar 

  8. Pezeshk S (1998) Design of framed structures: an integrated non-linear analysis and optimal minimum weight design. Int J Numer Methods Eng 41(3):459–471

    Article  MATH  Google Scholar 

  9. Li G, Zhou R-G, Duan L, Chen W-F (1999) Multiobjective and multilevel optimization for steel frames. Eng Struct 21(6):519–529

    Article  Google Scholar 

  10. Memari AM, Madhkhan M (1999) Optimal design of steel frames subject to gravity and seismic codes’ prescribed lateral forces. Struct Multidiscip Optim 18(1):56–66

    Google Scholar 

  11. Foley CM, Schinler D (2003) Automated design of steel frames using advanced analysis and object-oriented evolutionary computation. J Struct Eng 129(5):648–660

    Article  Google Scholar 

  12. Lagaros ND, Fragiadakis M, Papadrakakis M, Tsompanakis Y (2006) Structural optimization: a tool for evaluating seismic design procedures. Eng Struct 28(12):1623–1633

    Article  Google Scholar 

  13. Liu M, Burns SA, Wen YK (2006) Genetic algorithm based construction-conscious minimum weight design of seismic steel moment-resisting frames. J Struct Eng 132(1):50–58

    Article  Google Scholar 

  14. Chung TT, Sun TC (1994) Weight optimization for flexural reinforced concrete beams with static nonlinear response. Struct Multidiscip Optim 8(2):174–180

    Google Scholar 

  15. Karihaloo BL, Kanagasundaram S (1987) Optimum design of statically indeterminate beams under multiple loads. Comput Struct 26(3):521–538

    Article  MATH  Google Scholar 

  16. Karihaloo BL, Kanagasundaram S (1989) Minimum-weight design of structural frames. Comput Struct 31(5):647–655

    Article  MATH  Google Scholar 

  17. Sarma KC, Adeli H (1998) Cost optimization of concrete structures. J Struct Eng 124(5):570–578

    Article  Google Scholar 

  18. Hill LA (1966) Automated optimum cost building design. J Struct Div 92(6):247–264

    Google Scholar 

  19. Cohn MZ (1972) Optimal limit design for reinforced concrete structures. In: International symposium on inelasticity and nonlinearity in structural concrete, Waterloo, pp 357–388

    Google Scholar 

  20. Krishnamoorthy CS, Munro J (1973) Linear program for optimal design of reinforced concrete frames. Proc Int Assoc Bridge Struct Eng 33:119–141

    Google Scholar 

  21. Cauvin A (1979) Nonlinear elastic design and optimization of reinforced concrete frames. In: CSCE ASCE ACI CEB international symposium, University of Waterloo, Ontario, pp 197–217

    Google Scholar 

  22. Gerlein MA, Beaufait FW (1980) An optimum preliminary strength design of reinforced concrete frames. Comput Struct 11(6):515–524

    Article  MATH  Google Scholar 

  23. Kirsch U (1983) Multilevel optimal design of reinforced concrete structures. Eng Optim 6(4):207–212

    Article  Google Scholar 

  24. Cohn MZ, MacRae AJ (1984) Optimization of structural concrete beams. J Struct Eng 110(7):1573–1588

    Article  Google Scholar 

  25. Huanchun S, Zheng C (1985) Two-level optimum design of reinforced concrete frames with integer variables. Eng Optim 9(3):219–232

    Article  Google Scholar 

  26. Krishnamoorthy CS, Rajeev S (1989) Computer-aided optimal design of reinforced concrete frames. In: Ramakrisnan CV, Varadarajan A (eds) International conference on engineering software, Narosa, New Delhi

    Google Scholar 

  27. Hoit M (1991) Probabilistic design and optimization of reinforced concrete frames. Eng Optim 17(3):229–235

    Article  Google Scholar 

  28. Al-Gahtani AS, Al-Saadoun SS, Abul-Feilat EA (1995) Design optimization of continuous partially prestressed concrete beams. Comput Struct 55(2):365–370

    Article  Google Scholar 

  29. Cheng FY, Truman KZ (1985) Optimal design of 3-D reinforced concrete and steel buildings subjected to static and seismic loads including code provisions. Final report series 85-20, prepared by University of Missouri-Rolla, National Science Foundation, US Department of Commerce, Washington

    Google Scholar 

  30. Moharrami H, Grierson DE (1993) Computer-automated design of reinforced concrete frameworks. J Struct Eng 119(7):2036–2058

    Article  Google Scholar 

  31. Adamu A, Karihaloo BL (1994) Minimum cost design of RC beams using DCOC. Part I: Beams with freely-varying cross-sections. Struct Multidiscip Optim 7(4):237–251

    Article  Google Scholar 

  32. Adamu A, Karihaloo BL (1994) Minimum cost design of RC beams using DCOC. Part II: Beams with uniform cross-sections. Struct Multidiscip Optim 7(4):252–259

    Article  Google Scholar 

  33. Adamu A, Karihaloo BL, Rozvany GIN (1994) Minimum cost design of reinforced concrete beams using continuum-type optimality criteria. Struct Multidiscip Optim 7(1):91–102

    Google Scholar 

  34. Adamu A, Karihaloo BL (1995) Minimum cost design of RC frames using the DCOC method. Part I: Columns under uniaxial bending actions. Struct Multidiscip Optim 10(1):16–32

    Article  Google Scholar 

  35. Adamu A, Karihaloo BL (1995) Minimum cost design of RC frames using the DCOC method. Part II: Columns under biaxial bending actions. Struct Multidiscip Optim 10(1):33–39

    Article  Google Scholar 

  36. Fadaee MJ, Grierson DE (1996) Design optimization of 3D reinforced concrete structures. Struct Multidiscip Optim 12(2):127–134

    Google Scholar 

  37. Chan CM (2001) Optimal lateral stiffness design of tall buildings of mixed steel and concrete construction. Struct Des Tall Spec Build 10(3):155–177

    Article  Google Scholar 

  38. Chan CM, Zou XK (2004) Elastic and inelastic drift performance optimization for reinforced concrete buildings under earthquake loads. Earthq Eng Struct Dyn 33(8):929–950

    Article  Google Scholar 

  39. Zou X-K, Chan C-M (2004) An optimal resizing technique for seismic drift design of concrete buildings subjected to response spectrum and time history loadings. Comput Struct 83(19–20):1689–1704

    Google Scholar 

  40. Chan CM, Wang Q (2006) Nonlinear stiffness design optimization of tall reinforced concrete buildings under service loads. J Struct Eng 132(6):978–990

    Article  Google Scholar 

  41. Zou XK (2008) Integrated design optimization of base-isolated concrete buildings under spectrum loading. Struct Multidiscip Optim 36(5):493–507

    Article  Google Scholar 

  42. Goldberg DE, Samtani MP (1987) Engineering optimization via genetic algorithm. In: Will KM (ed) Ninth conference on electronic computation, New York

    Google Scholar 

  43. Pezeshk S, Camp CV (2002) State of the art on the use of genetic algorithms in design of steel structures. In: Burns SA (ed) Recent advances in optimal structural design. American Society of Civil Engineers, Reston

    Google Scholar 

  44. Choi CK, Kwak HG (1990) Optimum RC member design with predetermined discrete sections. J Struct Eng 116(10):2634–2655

    Article  MathSciNet  Google Scholar 

  45. Lee C, Ahn J (2003) Flexural design of reinforced concrete frames by genetic algorithm. J Struct Eng 129(6):762–774

    Article  Google Scholar 

  46. Camp CV, Pezeshk S, Hansson H (2003) Flexural design of reinforced concrete frames using a genetic algorithm. J Struct Eng 129(1):105–115

    Article  Google Scholar 

  47. Balling RJ, Yao X (1997) Optimization of reinforced concrete frames. J Struct Eng 123(2):193–202

    Article  Google Scholar 

  48. Rajeev S, Krishnamoorthy C (1998) Genetic algorithm-based methodology for design optimization of reinforced concrete frames. Comput-Aided Civ Infrastruct Eng 13(1):63–74

    Article  Google Scholar 

  49. Govindaraj V, Ramasamy JV (2005) Optimum detailed design of reinforced concrete continuous beams using genetic algorithms. Comput Struct 84(1–2):34–48

    Article  Google Scholar 

  50. Saini B, Sehgal VK, Gambhir ML (2007) Least-cost design of singly and doubly reinforced concrete beam using genetic algorithm optimized artificial neural network based on Levenberg-Marquardt and quasi-Newton backpropagation learning techniques. Struct Multidiscip Optim 34(3):243–260

    Article  Google Scholar 

  51. Sahab MG, Ashour AF, Toropov VV (2005) A hybrid genetic algorithm for reinforced concrete flat slab buildings. Comput Struct 83(8–9):551–559

    Article  Google Scholar 

  52. Sahab MG, Ashour AF, Toropov V (2005) Cost optimisation of reinforced concrete flat slab buildings. Eng Struct 27(3):313–322

    Article  Google Scholar 

  53. Salajegheh E, Gholizadeh S, Khatibinia M (2008) Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method. Earthq Eng Eng Vib 7(1):13–24

    Article  Google Scholar 

  54. Leps M, Sejnoha M (2003) New approach to optimization of reinforced concrete beams. Comput Struct 81(18–19):1957–1966

    Article  Google Scholar 

  55. Rao SS, Xiong Y (2005) A hybrid genetic algorithm for mixed-discrete design optimization. J Mech Des 127(6):1100–1112

    Article  Google Scholar 

  56. Ahmadi-Nedushan B, Varaee H (2011) Minimum cost design of concrete slabs using particle swarm optimization with time varying acceleration coefficients. World Appl Sci J 13(12):2484–2494

    Google Scholar 

  57. El Semelawy M, Nassef AO, El Damatty AA (2012) Design of prestressed concrete flat slab using modern heuristic optimization techniques. Expert Syst Appl 39(5):5758–5766

    Article  Google Scholar 

  58. Fragiadakis M, Papadrakakis M (2008) Performance-based optimum seismic design of reinforced concrete structures. Earthq Eng Struct Dyn 37(6):825–844

    Article  Google Scholar 

  59. Ang AHS, Lee J-C (2001) Cost optimal design of R/C buildings. Reliab Eng Syst Saf 73(3):233–238

    Article  Google Scholar 

  60. Li G, Cheng G (2003) Damage-reduction-based structural optimum design for seismic RC frames. Struct Multidiscip Optim 25(4):294–306

    Article  Google Scholar 

  61. Lagaros ND, Papadrakakis M (2007) Seismic design of RC structures: a critical assessment in the framework of multi-objective optimization. Earthq Eng Struct Dyn 36(12):1623–1639

    Article  Google Scholar 

  62. Zou XK, Chan CM, Li G, Wang Q (2007) Multiobjective optimization for performance-based design of reinforced concrete frames. J Struct Eng 133(10):1462–1474

    Article  Google Scholar 

  63. Fragiadakis M, Lagaros ND (2011) An overview to structural seismic design optimisation frameworks. Comput Struct 89(11–12):1155–1165

    Article  Google Scholar 

  64. Paya I, Yepes V, Gonzalez-Vidosa F, Hospitaler A (2008) Multiobjective optimization of concrete frames by simulated annealing. Comput-Aided Civ Infrastruct Eng 23(8):596–610

    Article  Google Scholar 

  65. Mitropoulou CC, Lagaros ND, Papadrakakis M (2011) Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions. Reliab Eng Syst Saf 96(10):1311–1331

    Article  Google Scholar 

  66. ASCE (2010) Minimum design loads for buildings and other structures. American Society of Civil Engineers, ASCE 7-10, Reston

    Google Scholar 

  67. FEMA (2003) NEHRP recommended provisions for seismic regulations for new buildings and other structures, FEMA 450, part 1: Provisions. Federal Emergency Management Agency, Washington

    Google Scholar 

  68. USGS (2009) Soil type and shaking hazard in the San Francisco Bay area. US Geological Survey. http://earthquake.usgs.gov/regional/nca/soiltype/. Accessed February 1, 2011

  69. PEER (2005) Pacific Earthquake Engineering Research (PEER) Center: NGA database. http://peer.berkeley.edu/nga/. Accessed January 1, 2009

  70. Hancock J, Watson-Lamprey J, Abrahamson NA, Bommer JJ, Markatis A, McCoyh E, Mendis R (2006) An improved method of matching response spectra of recorded earthquake ground motions using wavelets. J Earthq Eng 10(Suppl 1):67–89

    Google Scholar 

  71. Al Atik L, Abrahamson N (2010) An improved method for nonstationary spectral matching. Earthq Spectra 26(3):601–617

    Article  Google Scholar 

  72. Abrahamson NA (1993) Non-stationary spectral matching program RSPMatch, user’s manual

    Google Scholar 

  73. Haselton CB, Deierlein GG (2007) Assessing seismic collapse safety of modern reinforced concrete moment frame buildings. Report No 156, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Palo Alto

    Google Scholar 

  74. ACI (2011) Building code requirements for structural concrete (ACI 318-11) and commentary. American Concrete Institute, Farmington Hills

    Google Scholar 

  75. ACI (2008) Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute, Farmington Hills

    Google Scholar 

  76. ICC (2009) International building code. International Code Council, Washington

    Google Scholar 

  77. Elnashai AS, Papanikolaou VK, Lee D (2010) ZEUS NL—a system for inelastic analysis of structures, user’s manual. Mid-America Earthquake (MAE) Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  78. Izzuddin BA, Elnasahi AS (1993) Adaptive space frame analysis, part II: A distributed plasticity approach. Proc Inst Civ Eng, Struct Build 99:317–326

    Article  Google Scholar 

  79. Izzuddin BA, Elnasahi AS (1993) Eulerian formulation for large-displacement analysis of space frames. J Eng Mech 119(3):549–569

    Article  Google Scholar 

  80. Martínez-Rueda JE, Elnashai AS (1997) Confined concrete model under cyclic load. Mater Struct 30(3):139–147

    Article  Google Scholar 

  81. Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. Technical note 902, 1943-07, National Advisory Committee for Aeronautics, Washington

    Google Scholar 

  82. RS Means (2011) Building construction cost data 2011 book. RS Means, Reed Construction Data, Kingston

    Google Scholar 

  83. Gencturk B (2013) Life-cycle cost assessment of RC and ECC frames using structural optimization. Earthq Eng Struct Dyn 42(1):61–79

    Article  Google Scholar 

  84. Bland J (1998) Structural design optimization with reliability constraints using taboo search. Eng Optim 30(1):55–74

    Article  Google Scholar 

  85. Manoharan S, Shanmuganathan S (1999) A comparison of search mechanisms for structural optimization. Comput Struct 73(1–5):363–372

    Article  MATH  Google Scholar 

  86. Ohsaki M, Kinoshita T, Pan P (2007) Multiobjective heuristic approaches to seismic design of steel frames with standard sections. Earthq Eng Struct Dyn 36(11):1481–1495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Gencturk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gencturk, B., Hossain, K.A. (2013). Optimal Design of RC Frames Using Nonlinear Inelastic Analysis. In: Papadrakakis, M., Fragiadakis, M., Plevris, V. (eds) Computational Methods in Earthquake Engineering. Computational Methods in Applied Sciences, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6573-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6573-3_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6572-6

  • Online ISBN: 978-94-007-6573-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics