Skip to main content

Quantitative Analysis of Electrical Activity in the Gastrointestinal Tract

  • Chapter
  • First Online:
Book cover New Advances in Gastrointestinal Motility Research

Abstract

High resolution electrical mapping of the gastrointestinal tract provides us with vital information about the coordination of motility. Due to the nature of the recording setup, an enormous amount of information is collected which needs to be processed and analysed. In recent years, novel methods and software packages have been developed in order to automate the processes which were previously manually done with judicious selection. This chapter outlines the methods performed in order to analyse and visualize the electrical activity in an efficient and effective manner, with potential applications and future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58(3):476–493

    CAS  Google Scholar 

  2. Angeli TR, O’Grady G, Erickson JC, Du P, Paskaranandavadivel N, Bissett I, Cheng LK, Pullan AJ (2011) Methods and validation of mapping small intestine bioelectrical activity using high-resolution printed-circuit board electrodes. In: Conference proceedings—IEEE engineering in medicine and biology society, IEEE, pp 4951–4954

    Google Scholar 

  3. Bayly PV, KenKnight BH, Rogers JM, Hillsley RE, Ideker RE, Smith WM (1998) Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans Biomed Eng 45(5):563–571

    Article  PubMed  CAS  Google Scholar 

  4. Bortoff A (1967) Configuration of intestinal slow waves obtained by monopolar recording techniques. Am J Physiol 213(1):157–162

    PubMed  CAS  Google Scholar 

  5. Bull SH, O’Grady G, Cheng LK, Pullan AJ (2011) A framework for the online analysis of multi-electrode gastric slow wave recordings. In: Conference proceedings—IEEE engineering in medicine and biology society, 2011, pp 41–1744

    Google Scholar 

  6. Chen JDZ, Qian L, Ouyang H, Yin J et al (2003) Gastric electrical stimulation with short pulses reduces vomiting but not dysrhythmias in dogs. Gastroenterology 124(2):401–409

    Article  PubMed  Google Scholar 

  7. Cheng Leo K, O’Grady Gregory, Egbuji John U, Windsor John A, Pullan Andrew J (2010) Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med 2(1):65–79

    Article  PubMed  Google Scholar 

  8. Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Nielsen P, Windsor JA, Pullan AJ, Cheng LK (2009) High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37(4):839–846

    Article  PubMed  Google Scholar 

  9. Du P, O’Grady G, Paskaranandavadivel N, Angeli TR, Lahr C, Abell TL, Cheng LK, Pullan AJ (2011) Quantification of velocity anisotropy during gastric electrical arrhythmia. In: Conference proceedings—IEEE engineering in medicine and biology society, pp 4402–4405

    Google Scholar 

  10. Egbuji JU, Ogrady G, Du P, Cheng LK, Lammers WJEP, Windsor JA, Pullan AJ (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22(10):e292–e300

    Article  PubMed  CAS  Google Scholar 

  11. Erickson JC, O’Grady G, Du P, Egbuji JU, Pullan AJ, Cheng LK (2011) Automated gastric slow wave cycle partitioning and visualization for high-resolution activation time maps. Ann Biomed Eng 39:1–15

    Article  Google Scholar 

  12. Erickson JC, O’Grady G, Du P, Obioha C, Qiao W, Richards WO, Bradshaw LA, Pullan AJ, Cheng LK (2010) Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings. Ann Biomed Eng 38(4):1511–1529

    Article  PubMed  Google Scholar 

  13. Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20:54–63

    Article  PubMed  Google Scholar 

  14. Fitzgerald TN, Brooks DH, Triedman JK (2005) Identification of cardiac rhythm features by mathematical analysis of vector fields. IEEE Trans Biomed Eng 52(1):19–29

    Article  PubMed  Google Scholar 

  15. Gaudette RJ, Brooks DH, MacLeod RS (1997) Epicardial velocity estimation using wavelets. In: Computers in cardiology, IEEE, pp 339–342

    Google Scholar 

  16. Hammad FT, Lammers WJ, Stephen B, Lubbad L (2011) Propagation of the electrical impulse in reversible unilateral ureteral obstruction as determined at high electrophysiological resolution. J Urol 185(2):744–750

    Article  PubMed  Google Scholar 

  17. Huizinga JD, Lammers WJEP (2009) Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 296(1):G1–G8

    Article  PubMed  CAS  Google Scholar 

  18. Kaiser JF (1993) Some useful properties of teager’s energy operators. In: IEEE transactions on acoustics, speech, and signal processing, vol 3, IEEE, pp 149–152

    Google Scholar 

  19. Kelly KA, Elveback LR (1969) Patterns of canine gastric electrical activity. Am J Physiol 217(2):461–470

    PubMed  CAS  Google Scholar 

  20. Kleber AG, Janse MJ, Wilms-Schopmann FJ, Wilde AA, Coronel R (1986) Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart. Circulation 73(1):189–198

    Article  PubMed  CAS  Google Scholar 

  21. Lammers WJ, el Kays A, Arafat K, el Sharkawy TY (1995) Wave mapping: detection of co-existing multiple wavefronts in high-resolution electrical mapping. Med Biol Eng Comput 33:476–481

    Article  PubMed  CAS  Google Scholar 

  22. Lammers WJEP (2009) Smoothmap v3.05. Al Ain, United Arab Emirates (Online)

    Google Scholar 

  23. Lammers WJEP, Donck LV, Schuurkes JAJ, Stephen B (2005) Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83(11):1031–1043

    Article  PubMed  CAS  Google Scholar 

  24. Lammers WJEP, Michiels B, Voeten J, Donck LV, Schuurkes JAJ (2008) Mapping slow waves and spikes in chronically instrumented dogs: automated on-line electrogram analysis. Med Biol Eng Comput 46:121–129

    Article  PubMed  Google Scholar 

  25. Lammers WJEP, Stephen B, Arafat K, Manefield GW (1996) High resolution electrical mapping in the gastrointestinal system: initial results. Neurogastroenterol Motil 8(3):207–216

    Article  PubMed  CAS  Google Scholar 

  26. Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterolerology 135(5):1601–1611

    Article  Google Scholar 

  27. Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296(6):G1200–G1210

    Article  PubMed  CAS  Google Scholar 

  28. Lee HT, Hennig GW, Fleming NW, Keef KD, Spencer NJ, Ward SM, Sanders KM, Smith TK (2007) The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology 132(5):1852–1865

    Article  PubMed  CAS  Google Scholar 

  29. Maragos P, Potamianos A (1995) Higher order differential energy operators. IEEE Signal Process Lett 2(8):152–154

    Article  Google Scholar 

  30. Mase M, Ravelli F (2010) Automatic reconstruction of activation and velocity maps from electro-anatomic data by radial basis functions. In: Conference proceeding—IEEE engineering in medicine and biology society, IEEE, pp 2608–2611

    Google Scholar 

  31. Mukhopadhyay S, Ray GC (1998) A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45(2):180–187

    Article  PubMed  CAS  Google Scholar 

  32. Nenadic Z, Burdick JW (2005) Spike detection using the continuous wavelet transform. IEEE Trans Biomed Eng 52(1):74–87

    Article  PubMed  Google Scholar 

  33. O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJ, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(3):589–98

    Google Scholar 

  34. O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299(3):G585–G592

    Article  PubMed  Google Scholar 

  35. O’Grady G, Du P, Lammers WJEP, Egbuji JU, Mithraratne P, Chen JDZ, Cheng LK, Windsor JA, Pullan AJ (2010) High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am J Physiol Gastrointest Liver Physiol 298(2):G314–G321

    Article  PubMed  Google Scholar 

  36. O’Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJ, Farrugia G, Asirvatham S, Windsor JA, Pullan AJ, Cheng LK (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23(9):e345–e355

    Article  PubMed  Google Scholar 

  37. O’Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJEP, Farrugia G, Asirvatham S, Windsor JA, Pullan AJ, Cheng LK (2012) Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 24(7):e299–e312

    Article  PubMed  Google Scholar 

  38. O’Grady G, Egbuji JU, Du P, Lammers W, Cheng LK, Windsor JA, Pullan AJ (2011) igh-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroent Motil 23(9):e345–e355

    Article  Google Scholar 

  39. O’Grady G, Paskaranandavadivel N, Angeli TR, Du P, Windsor JA, Cheng LK, Pullan AJ (2011) A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiol Meas 32(3):N13–N22

    Article  PubMed  Google Scholar 

  40. Paskaranandavadivel N, Cheng LK, Du P, O’Grady G, Pullan AJ (2011) Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. In: Conference proceeding—IEEE engineering in medicine and biology society, pp 1737–1740

    Google Scholar 

  41. Paskaranandavadivel N, O’Grady G, Du P, Pullan AJ, Cheng LK (2012) An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE Trans Biomed Eng 59(3):882–889

    Article  PubMed  Google Scholar 

  42. Rogers JM, Bayly PV, Ideker RE, Smith WM (1998) Quantitative techniques for analyzing high-resolution cardiac-mapping data. IEEE Eng Med Biol Mag 17:62–72

    Article  PubMed  CAS  Google Scholar 

  43. Rogers JM, Usui M, KenKnight BH, Ideker RE, Smith WM (1997) A quantitative framework for analyzing epicardial activation patterns during ventricular fibrillation. Ann Biomed Eng 25:749–760

    Article  PubMed  CAS  Google Scholar 

  44. Sarna SK, Daniel EE, Kingma YJ (1972) Effects of partial cuts on gastric electrical control activity and its computer model. Am J Physiol 223(2):332–340

    PubMed  CAS  Google Scholar 

  45. Sezan MI (1990) A peak detection algorithm and its application to histogram-based image data reduction. Comput Vis Graph Image process 49(1):36–51

    Article  Google Scholar 

  46. Spach MS, Barr RC, Serwer GA, Kootsey JM, Johnson EA (1972) Extracellular potentials related to intracellular action potentials in the dog purkinje system. Circ Res 30(5):505–519

    Article  PubMed  CAS  Google Scholar 

  47. Yassi R, O’Grady G, Paskaranandavadivel N, Du P, Angeli TR, Pullan AJ, Cheng LK, Erickson JC (2012) The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol 12(60):1–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by research grants from the Health Research Council of New Zealand and the NIH (R01 DK64775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Erickson, J.C., Paskaranandavadivel, N., Bull, S.H. (2013). Quantitative Analysis of Electrical Activity in the Gastrointestinal Tract. In: Cheng, L., Pullan, A., Farrugia, G. (eds) New Advances in Gastrointestinal Motility Research. Lecture Notes in Computational Vision and Biomechanics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6561-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6561-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6560-3

  • Online ISBN: 978-94-007-6561-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics