Skip to main content

The Principles and Practice of Gastrointestinal High-Resolution Electrical Mapping

  • Chapter
  • First Online:
New Advances in Gastrointestinal Motility Research

Abstract

High resolution (multi-electrode) electrical mapping has become a prominent technique for investigating the propagation of electrical activity in the gastrointestinal (GI) tract. This technique involves the placement of dense arrays of many electrodes over the surface of the tissue, in order to reconstruct the spread of electrical activation in accurate spatiotemporal detail. Multi-electrode mapping can be performed in-vivo and in-vitro in a variety of animal models, and clinical methods for human mapping are also advancing. This chapter reviews the current status of GI multi-electrode mapping, with a particular focus on the principles of extracellular recordings, the design of mapping devices, the discrimination of artifacts, and the practical considerations for successful experimental work. Potential future directions for the field are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez WC (1922) The electrogastrogram and what it shows. JAMA 78:1116–1119

    Article  Google Scholar 

  2. Alvarez WC (1929) Physiologic studies on the motor activities of the stomach and bowel in man. Am J Physiol 88(4):650–662

    Google Scholar 

  3. Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58(3):476–493

    CAS  Google Scholar 

  4. Angeli TR, O’Grady G, Erickson JC, Du P, Paskaranandavadivel N, Bissett IP et al (2011) Mapping small intestine bioelectrical activity using high-resolution printed-circuit-board electrodes. In: Conference Proceedings—IEEE Engineering in Medicine and Biology Society, pp 4951–4954

    Google Scholar 

  5. Bass P, Code CF, Lambert EH (1961) Motor and electric activity of the duodenum. Am J Physiol 201:287–291

    PubMed  CAS  Google Scholar 

  6. Bayguinov O, Hennig GW, Sanders KM (2011) Movement artifacts may contaminate extracellular electrical recordings from GI muscles. Neurogastroenterol Motil 23:1029–e498

    Article  PubMed  CAS  Google Scholar 

  7. Berkson J, Baldes EJ, Alvarez WC (1932) Electromyographic studies of the gastrointestinal tract: I. The correlations between mechanical movement and changes in electrical potential during rhythmic contraction of the intestine. Am J Physiol 102(3):683–692

    Google Scholar 

  8. Bortoff A (1961) Slow potential variations of small intestine. Am J Physiol 201(1):203–208

    Google Scholar 

  9. Bortoff A (1967) Configuration of intestinal slow waves obtained by monopolar recording techniques. Am J Physiol 213(1):157–162

    PubMed  CAS  Google Scholar 

  10. Bortolotti M, Sarti P, Barara L, Brunelli F (1990) Gastric myoelectrical activity in patients with chronic idiopathic gastroparesis. J Gastroint Motil 2:104–108

    Article  Google Scholar 

  11. Bozler E (1942) The action potentials accompanying conducted responses in visceral smooth muscles. Am J Physiol 136(4):553–560

    Google Scholar 

  12. Bozler E (1939) Electrophysiological studies on the motility of the gastrointestinal tract. Am J Physiol 127(2):301–307

    Google Scholar 

  13. Bull S, O’Grady G, Cheng LK, Pullan AJ (2011) A framework for the online analysis of multi-electrode gastric slow wave recordings. In: Conference Proceedings—IEEE Engineering in Medicine and Biology Society, pp 1741–1744

    Google Scholar 

  14. Coleski R, Hasler WL (2009) Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycaemia in healthy humans. Neurogastroenterol Motil 21(5):492–499, e1–e2

    Google Scholar 

  15. Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Nielsen P et al (2009) High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37(4):839–846

    Article  PubMed  Google Scholar 

  16. Egbuji JU, O’Grady G, Du P, Cheng LK, Lammers WJEP, Windsor JA et al (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22:e292–e300

    Article  PubMed  CAS  Google Scholar 

  17. Erickson JC, O’Grady G, Du P, Egbuji JU, Pullan AJ, Cheng LK (2011) Automated cycle partitioning and visualization of high-resolution activation time maps of gastric slow wave recordings: the region growing using polynomial surface-estimate stabilization (REGROUPS) algorithm. Ann Biomed Eng 39(1):469–483

    Article  PubMed  Google Scholar 

  18. Erickson JC, O’Grady G, Du P, Obioha C, Qiao W, Richards WO et al (2010) Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in serosal high-resolution electrical recordings. Ann Biomed Eng 38(4):1511–1529

    Article  PubMed  Google Scholar 

  19. Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20(suppl 1):54–63

    Article  PubMed  Google Scholar 

  20. Fontanesi L, D’Alessandro E, Scotti E, Liotta L, Crovetti A, Chiofalo V et al (2010) Genetic heterogeneity and selection signature at the KIT gene in pigs showing different coat colours and patterns. Anim Genet 41(5):478–492

    Article  PubMed  CAS  Google Scholar 

  21. Hooks DA, Trew ML (2008) Construction and validation of a plunge electrode array for three-dimensional determination of conductivity in the heart. IEEE Trans Biomed Eng 55(2 Pt 1):626–635

    Article  PubMed  Google Scholar 

  22. Hotokezaka M, Mentis EP, Patel SP, Combs MJ, Teates CD, Schirmer BD (1997) Recovery of gastrointestinal tract motility and myoelectric activity change after abdominal surgery. Arch Surg 132(4):410–417

    Article  PubMed  CAS  Google Scholar 

  23. Hou X, Yin J, Liu J, Pasricha PJ, Chen JD (2005) In vivo gastric and intestinal slow waves in W/WV mice. Dig Dis Sci 50(7):1335–1341

    Article  PubMed  Google Scholar 

  24. Ideker RE, Smith WM, Blanchard SM, Reiser SL, Simpson EV, Wolf PD et al (1989) The assumptions of isochronal cardiac mapping. Pacing Clin Electrophysiol 12(3):456–478

    Article  PubMed  CAS  Google Scholar 

  25. Kelly KA, Code CF, Elveback LR (1969) Patterns of canine gastric electrical activity. Am J Physiol 217(2):461–470

    PubMed  CAS  Google Scholar 

  26. Kimber S, Downar E, Masse S, Sevaptsidis E, Chen T, Mickleborough L et al (1996) A comparison of unipolar and bipolar electrodes during cardiac mapping studies. Pacing Clin Electrophysiol 19(8):1196–1204

    Article  PubMed  CAS  Google Scholar 

  27. Lammers WJ (2000) Propagation of individual spikes as “patches” of activation in isolated feline duodenum. Am J Physiol Gastrointest Liver Physiol 278(2):G297–G307

    PubMed  CAS  Google Scholar 

  28. Lammers WJ (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol Gastrointest Liver Physiol 289(5):G898–G903

    Article  PubMed  CAS  Google Scholar 

  29. Lammers WJ, Abazer FA, Ver Donck L, Smets D, Schuurkes JA, Coulie B (2006) Electrical activity in the rectum of anaesthetized dogs. Neurogastroenterol Motil 18(7):569–577

    Article  PubMed  CAS  Google Scholar 

  30. Lammers WJ, Al-Bloushi HM, Al-Eisae SA, Al-Dhaheri FA, Stephen BS, John R et al (2011) Slow wave propagation and ICC plasticity in the small intestine of diabetic rats. Exp Physiol 96(10):1039–1148

    PubMed  Google Scholar 

  31. Lammers WJ, al-Kais A, Singh S, Arafat K, el-Sharkawy TY (1993) Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 74(3):1454–1461

    PubMed  CAS  Google Scholar 

  32. Lammers WJ, Donck LV, Schuurkes JA, Stephen B (2003) Longitudinal and circumferential spike patches in the canine small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 285(5):G1014–G1027

    PubMed  CAS  Google Scholar 

  33. Lammers WJ, el-Kays A, Manefield GW, Arafat K, el-Sharkawy TY (1997) Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur J Gastroenterol Hepatol 9(4):381–388

    Article  PubMed  CAS  Google Scholar 

  34. Lammers WJ, Michiels B, Voeten J, Ver Donck L, Schuurkes JA (2008) Mapping slow waves and spikes in chronically instrumented conscious dogs: automated on-line electrogram analysis. Med Biol Eng Comput 46(2):121–129

    Article  PubMed  Google Scholar 

  35. Lammers WJ, Slack JR, Stephen B, Pozzan O (2000) The spatial behaviour of spike patches in the feline gastroduodenal junction in vitro. Neurogastroenterol Motil 12(5):467–473

    Article  PubMed  CAS  Google Scholar 

  36. Lammers WJ, Stephen B (2008) Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 93(3):334–346

    Article  PubMed  Google Scholar 

  37. Lammers WJ, Stephen B, Arafat K, Manefield GW (1996) High resolution electrical mapping in the gastrointestinal system: initial results. Neurogastroenterol Motil 8(3):207–216

    Article  PubMed  CAS  Google Scholar 

  38. Lammers WJ, Stephen B, Slack JR (2002) Similarities and differences in the propagation of slow waves and peristaltic waves. Am J Physiol Gastrointest Liver Physiol 283(3):G778–G786

    PubMed  CAS  Google Scholar 

  39. Lammers WJ, Ver Donck L, Schuurkes JA, Stephen B (2005) Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83(11):1031–1043

    Article  PubMed  CAS  Google Scholar 

  40. Lammers WJ, Ver Donck L, Stephen B, Smets D, Schuurkes JA (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296:1200–1210

    Article  Google Scholar 

  41. Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135(5):1601–1611

    Article  PubMed  Google Scholar 

  42. Lapatki BG, Van Dijk JP, Jonas IE, Zwarts MJ, Stegeman DF (2004) A thin, flexible multielectrode grid for high-density surface EMG. J Appl Physiol 96(1):327–336

    Article  PubMed  CAS  Google Scholar 

  43. McAdams E (2006) Bioelectrodes. In: Webster JG (ed) Encyclopedia of Medical Devices and Instrumentation, 2nd edn. Wiley, New York, pp 120–166

    Google Scholar 

  44. Metting Van Rijn AC, Kuiper AP, Linnenbank AC, Grimbergen CA (1993) Patient isolation in multichannel bioelectric recordings by digital transmission through a single optical fiber. IEEE Trans Biomed Eng 40(3):302–308

    Article  CAS  Google Scholar 

  45. Monges H, Salducci J (1970) A method of recording the gastric electrical activity in man. Am J Dig Dis 15:271

    Article  PubMed  CAS  Google Scholar 

  46. O’Grady G (2012) Gastrointestinal extracellular electrical recordings: fact or artifact? Neurogastroenterol Motil 24(1):1–6

    Article  PubMed  Google Scholar 

  47. O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(3):589–598

    Google Scholar 

  48. O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJ, Windsor JA et al (2010) The origin and propagation of human gastric slow wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299(3):585–592

    Article  Google Scholar 

  49. O’Grady G, Du P, Egbuji JU, Lammers WJ, Wahab A, Pullan AJ et al (2009) A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg Endosc 23:2842–2848

    Article  PubMed  Google Scholar 

  50. O’Grady G, Du P, Lammers WJ, Egbuji JU, Mithraratne P, Chen JDZ et al (2010) High-resolution entrainment mapping for gastric pacing: a new analytic tool. Am J Physiol Gastrointest Liver Physiol 298:314–321

    Article  Google Scholar 

  51. O’Grady G, Du P, Paskaranandavadivel N, Angeli T, Lammers WJEP, Farrugia G et al (2012) Rapid high-amplitude circumferential slow wave conduction during normal gastric pacemaking and dysrhythmias 24(7):e299–312

    Google Scholar 

  52. O’Grady G, Egbuji JU, Du P, Lammers WJ, Cheng LK, Windsor JA et al (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23(9):e345–e355

    Article  PubMed  Google Scholar 

  53. O’Grady G, Paskaranandavadivel N, Angeli T, Du P, Windsor JA, Cheng LK et al (2011) A comparison of gold vs silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board electrodes. Physiol Meas 32:N13–N22

    Article  PubMed  Google Scholar 

  54. Ohba M, Sakamoto Y, Tomita T (1975) The slow wave in the circular muscle of the guinea-pig stomach. J Physiol 253(2):505–516

    PubMed  CAS  Google Scholar 

  55. Plonsey R, Barr RC (2007) Extracellular fields. In: Plonsey R, Barr RC (eds) Bioelectricity: a quantitative approach. Springer, New York, pp 223–265

    Chapter  Google Scholar 

  56. Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 20(suppl 1):39–53

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki N, Prosser CL, DeVos W (1986) Waxing and waning of slow waves in intestinal musculature. Am J Physiol 250(1 Pt 1):G28–G34

    PubMed  CAS  Google Scholar 

  58. Szurszewski JH (1969) A migrating electric complex of canine small intestine. Am J Physiol 217(6):1757–1763

    PubMed  CAS  Google Scholar 

  59. Szurszewski JH, Elveback LR, Code CF (1970) Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol 218(5):1468–1473

    PubMed  CAS  Google Scholar 

  60. Thorn SE, Wattwil M, Lindberg G, Sawe J (1996) Systemic and central effects of morphine on gastroduodenal motility. Acta Anaesthesiol Scand 40(2):177–186

    Article  PubMed  CAS  Google Scholar 

  61. Ver Donck L, Lammers WJ, Moreaux B, Smets D, Voeten J, Vekemans J et al (2006) Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med Biol Eng Comput 44(3):170–178

    Article  PubMed  CAS  Google Scholar 

  62. Wang XY, Lammers WJ, Bercik P, Huizinga JD (2005) Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol Gastrointest Liver Physiol 289(3):G539–G549

    Article  PubMed  CAS  Google Scholar 

  63. Yassi R, O’Grady G, Paskaranandavadivel N, Du P, Angeli TR, Pullan AJ, Cheng LK, Erickson JC (2012) The Gastrointestinal Electrical Mapping Suite (GEMS): Software for analysing and visualising gastrointestinal multi-electrode recordings. BMC Gastroenterol 12(60):1–14

    Google Scholar 

Download references

Acknowledgments

GOG is supported by grants from the American Neurogastroenterology & Motility Society, the NZ Health Research Council, and the NIH (R01 DK64775). TRA is supported by the Riddett Institute and the Royal Society of NZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory O’Grady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Grady, G., Angeli, T.R., Lammers, W.J.E.P. (2013). The Principles and Practice of Gastrointestinal High-Resolution Electrical Mapping. In: Cheng, L., Pullan, A., Farrugia, G. (eds) New Advances in Gastrointestinal Motility Research. Lecture Notes in Computational Vision and Biomechanics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6561-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6561-0_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6560-3

  • Online ISBN: 978-94-007-6561-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics