Skip to main content

Extremophiles on Alien Worlds: What Types of Organismic Adaptations are Feasible on Other Planetary Bodies

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 28))

Abstract

Scholars since ancient times have often wondered how diverse life can be. We know that life is intrinsically linked to its environment and different environments result in different organismic survival strategies. We encounter a wide variety of environments on Earth, and many more on the planets and moons in our Solar System. By looking at the most important and promising of these planetary bodies, namely, Venus, Mars, Europa, and Titan, I like to point out possibilities and avenues for organismic adaptations at these locations, with a particular focus on metabolic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    Article  PubMed  CAS  Google Scholar 

  • Brown RH et al (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket fuelled metabolism. Nat Rev Microbiol 2:569–580

    Article  PubMed  CAS  Google Scholar 

  • Eschenbach DA et al (1989) Identification of and hydrogen peroxide production by fecal and vaginal lactobacilli isolated from Japanese women and newborn infants. J Clin Microbiol 27:251–256

    PubMed  CAS  Google Scholar 

  • Fairén AG et al (2003) Episodic flood inundations of the northern plains of Mars. Icarus 165:53–67

    Article  Google Scholar 

  • Friedmann EA, Wierzchos J, Ascaso C, Winklhofer M (2001) Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc Natl Acad Sci USA 98:2176–2181

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M et al (1999) The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, New York, pp 177–186

    Google Scholar 

  • Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int J Astrobiol 6:147–152

    Article  CAS  Google Scholar 

  • Irwin LN, Schulze-Makuch D (2001) Assessing the plausibility of life on other worlds. Astrobiology 1:143–160

    Article  PubMed  CAS  Google Scholar 

  • Irwin LN, Schulze-Makuch D (2011) Cosmic biology: how life could evolve on other words. Springer Praxis, Heidelberg

    Google Scholar 

  • Kasting JF (1989) How Venus lost its oceans. Oceanus (Woods Hole) 32:54–57

    Google Scholar 

  • Kreuzer-Martin HW, Ehleringer JR, Hegg EL, Hayes JM (2005) Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism. Proc Natl Acad Sci USA 102:17337–17341

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Malin MC, Edgett KS (2003) Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276

    Article  CAS  Google Scholar 

  • Muller AWJ (1985) Thermosynthesis by biomembranes: energy gain from cyclic temperature changes. J Theor Biol 115:429–453

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (1993) A mechanism for thermosynthesis based on a thermotropic phase transition in an asymmetric biomembrane. Physiol Chem Phys Med NMR 25:95–111

    CAS  Google Scholar 

  • Muller AWJ (1995) Were the first organisms heat engines? – a new model for biogenesis and the early evolution of biological energy conversion. Prog Biophys Mol Biol 63:193–231

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (2003) Finding extraterrestrial organisms living on thermosynthesis. Astrobiology 3:555–564

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ, Schulze-Makuch D (2006) Thermal energy and the origin of life. Orig Life Evol Biosph 36:177–189

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK, Mitchell HK, Ruffroberts AL (1993) Chloroflexus aurantiacus and ultraviolet-radiation-implications for Archean shallow-water stromatolites. Orig Life Evol Biosph 23:243, B71A-0734260

    Article  Google Scholar 

  • Reynolds RT, Squyres SW, Colburn DS, McKay CP (1983) On the habitability of Europa. Icarus 56:246–254

    Article  Google Scholar 

  • Ryan CS, Kleinberg I (1995) Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch Oral Biol 40:753–763

    Article  PubMed  CAS  Google Scholar 

  • Schleper C et al (1996) Picrophilus gen. Nov., fam. Nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7079

    Google Scholar 

  • Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on Titan? Astrobiology 5:560–567

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D, Houtkooper JM (2010) A perchlorate strategy for extreme xerophilic life on Mars? In: Abstract, European Planetary Science congress, Rome, 19–24 Sept 2010

    Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002a) Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2:197–202

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002b) Energy cycling and hypothetical organisms in Europa’s ocean. Astrobiology 2:105–121

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, Berlin, 251 p

    Book  Google Scholar 

  • Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock M (2004) A sulfur-based UV adaptation strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4:11–18

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D et al (2005) Venus, Mars, and the ices on Mercury and the Moon: astrobiological implications and proposed mission designs. Astrobiology 5:778–795

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D et al (2011) Microbial life in a liquid asphalt desert. Astrobiology 11:241–258

    Article  PubMed  Google Scholar 

  • Seckbach J (2013) Life on the edge and astrobiology: who is who in the polyextremophiles world? In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Springer, Dordrecht, pp 61–79

    Google Scholar 

  • Shapiro RS, Schulze-Makuch D (2009) The search for alien life in our solar system: strategies and priorities. Astrobiology 9:335–343

    Article  PubMed  CAS  Google Scholar 

  • Shihira-Ishikawa I, Nawata T (1992) The structure and physiological properties of the cytoplasm in intact Valonia cell. Jpn J Phycol (Sorui) 40:151–159

    CAS  Google Scholar 

  • Stofan ER et al (2007) The lakes of Titan. Nature 445:61–64

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum SW (1956) The metabolism of Acetobacter peroxidans, I. Oxidative enzymes. Biochim Biophys Acta 21:335–342

    Article  PubMed  CAS  Google Scholar 

  • Tokano T et al (2006) Methane drizzle on Titan. Nature 442:432–435

    Article  PubMed  CAS  Google Scholar 

  • Tortora G, Funke B, Case C (2001) Microbiology: an introduction, 7th edn. Addison Wesley Longman Publishers, San Francisco

    Google Scholar 

  • Wilmer P, Stone G, Johnston I (2000) Environmental physiology of animals. Blackwell Science, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schulze-Makuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulze-Makuch, D. (2013). Extremophiles on Alien Worlds: What Types of Organismic Adaptations are Feasible on Other Planetary Bodies. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_14

Download citation

Publish with us

Policies and ethics