Skip to main content

Homocysteine, Neurotoxicity and Hyperexcitability

  • Conference paper
  • First Online:
  • 982 Accesses

Abstract

The research efforts worldwide have established the sulphur-containing amino acid homocysteine (Hcy) as a potent and independent risk factor (or risk marker) for a number of cardiovascular, as well as central nervous system disorders. This vasotoxic and neurotoxic agent interferes with fundamental biological ­processes and it is metabolized to homocysteine thiolactone, its highly reactive thioester. Hcy and its metabolites induced neuronal damage and cell loss through excitotoxicity and apoptosis. Our results showed that Hcy and Hcy thiolactone ­significantly affect neuronal cycles, EEG tracings and behavioral responses. After systemic administration, this naturally occurred substance led to the appearance of two different kinds of epileptic activity in adult rats. It has been suggested that Hcy thiolactone may be considered as an excitatory metabolite, capable of becoming a convulsant if accumulated to a greater extent in the brain. It was also found that changes in Na+/K+-ATPase activity could be an important factor for the ­establishment of epileptic focus in Hcy-treated rats. Recently, we demonstrated functional ­involvement of NO signaling pathway in mechanisms of hyperexcitability caused by Hcy thiolactone. Acute ethanol treatment was shown in our study to decrease EEG power spectra and to represent one of the factors of the exogenous stabilization of brain excitability. Furthermore, our preliminary results showed that hypermethionine diet could contribute to these effects. Developed model of Hcy thiolactone-­induced seizures in adult rats allows further investigations of mechanisms involved in Hcy's neurotoxicity and hyperexcitability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jakubowski H (2002) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428

    Article  PubMed  CAS  Google Scholar 

  2. Jakubowski H (2008) The pathophysiological hypothesis of homocysteine thiolactone-­mediated vascular disease. J Physiol Pharmacol 59:155–167

    PubMed  Google Scholar 

  3. Syardal A, Refsum H, Ueland PM (1986) Determination of in vivo protein binding of homocysteine and its relation to free homocysteine in the liver and other tissues of the rat. J Biol Chem 261:3156–3163

    Google Scholar 

  4. De Bree A, Verschuren WMM, Kromhout D et al (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  5. Mitrovic V, Djuric D, Petkovic D et al (2002) Evaluation of plasma total homocysteine in patients with angiographically confirmed coronary atherosclerosis: possible impact on therapy and prognosis. Perfusion 15:10–19

    Google Scholar 

  6. Djuric D, Jakovljevic V, Rašić-Marković A et al (2008) Homocysteine, folic acid and coronary artery disease: possible impact on prognosis and therapy. Indian J Chest Dis Allied Sci 50:39–48

    PubMed  CAS  Google Scholar 

  7. Djuric D, Vusanovic A, Jakovljevic V (2007) The effects of folic acid and nitric oxide synthase inhibition on coronary flow and oxidative stress markers in isolated rat heart. Mol Cell Biochem 300(1–2):177–183

    Article  PubMed  CAS  Google Scholar 

  8. Clarke R, Daly L, Robinson K et al (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155

    Article  PubMed  CAS  Google Scholar 

  9. Troen AM (2005) The central nervous system in animal models of hyperhomocysteinemia. Prog Neuropsychopharm Biol Psychiatry 29:1140–1151

    Article  CAS  Google Scholar 

  10. Zou CG, Banerjee R (2005) Homocysteine and redox signaling. Antioxid Redox Signal 7:547–559

    Article  PubMed  CAS  Google Scholar 

  11. Miller JW, Nadeau MR, Smith D et al (1994) Vitamin B-6 deficiency vs. folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr 59:1033–1039

    PubMed  CAS  Google Scholar 

  12. Mato JM, Lu SC (2005) Homocysteine, the bad thiol. Hepatology 41:976–979

    Article  PubMed  Google Scholar 

  13. Chwatko G, Jakubowski H (2005) The determination of homocysteine thiolactone in human plasma. Anal Biochem 15:271–277

    Article  Google Scholar 

  14. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  PubMed  CAS  Google Scholar 

  15. Reis EA, Zugno AI, Zugno AI et al (2002) Pretreatment with vitamins E and C prevents the impairment of memory caused by homocysteine administration in rats. Metab Brain Dis 17:211–217

    Article  PubMed  CAS  Google Scholar 

  16. Wuerthele SE, Yasuda RP, Freed WJ et al (1982) The effect of local application of homocysteine on neuronal activity in the central nervous system of the rat. Life Sci 31:2683–2691

    Article  PubMed  CAS  Google Scholar 

  17. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157:S40–S44

    Article  PubMed  CAS  Google Scholar 

  18. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurological disorders. N Engl J Med 330:613–622

    Article  PubMed  CAS  Google Scholar 

  19. Kamath AF, Chauhan AK, Kisucka J et al (2006) Elevated levels of homocysteine compromise blood–brain barrier integrity in mice. Blood 107:591–593

    Article  PubMed  CAS  Google Scholar 

  20. Hanyu N, Shimizu T, Yamauchi K et al (2009) Characterization of cysteine and homocysteine bound to human serum transthyretin. Clin Chim Acta 403:70–75

    Article  PubMed  CAS  Google Scholar 

  21. Chigurupati S, Wei Z, Belal C et al (2009) The homocysteineinducible endoplasmic reticulum stress protein counteracts calcium store depletion and induction of CCAAT enhancer-binding protein homologous protein in a neurotoxin model of Parkinson disease. J Biol Chem 284:18323–18333

    Article  PubMed  CAS  Google Scholar 

  22. Hucks D, Thuraisingham RC, Raftery MJ et al (2004) Homocysteine induced impairment of nitric oxide-dependent vasorelaxation is reversible by the superoxide dismutase mimetic TEMPOL. Nephrol Dial Transpl 19:1999–2005

    Article  CAS  Google Scholar 

  23. Shandra AA, Godlevskii LS, Brusentsov AI et al (1998) Effect of δ-sleep-inducing peptide on NMDA-induced convulsive activity in rats. Neurosci Behav Physiol 28:694–697

    Article  PubMed  CAS  Google Scholar 

  24. Stanojlovic O, Hrnčić D, Racic A et al (2007) Interaction of δ-sleep-inducing peptide peptide and valproate on metaphit audiogenic seizure model in rats. Cell Mol Neurobiol 27:923–932

    Article  PubMed  CAS  Google Scholar 

  25. Stanojlovic O, Zivanovic D, Susic V (2000) N-methyl-D-aspartic acid and metaphit-induced audiogenic seizures in rat model of seizure. Pharmacol Res 42:247–253

    Article  PubMed  CAS  Google Scholar 

  26. Vucevic D, Hrncic D, Radosavljevic T et al (2008) Correlation between electroencephalographic and motor phenomena in lindane-induced experimental epilepsy in rats. Can J Physiol Pharmacol 286:173–179

    Article  Google Scholar 

  27. Mladenovic D, Hrnčić D, Vucevic D et al (2007) Ethanol suppressed seizures in lindane-treated rats. Electroencephalographic and behavioral studies. J Physiol Pharmacol 58:641–654

    PubMed  CAS  Google Scholar 

  28. Hrnčić D, Rašić-Marković A, Djuric D et al (2011) The role of nitric oxide in convulsions induced by lindane in rats. Food Chem Toxicol 49(4):947–954

    Article  PubMed  Google Scholar 

  29. Sprince H, Parker CM, Josephs JA (1969) Homocysteine-induced convulsions in the rat: Protection by homoserine, serine, betaine, glycine and glucose. Agents Actions 1:9–13

    Article  PubMed  CAS  Google Scholar 

  30. Perla-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  PubMed  CAS  Google Scholar 

  31. Sener U, Zorlu Y, Karaguzel O et al (2006) Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6. Seizure 15:79–85

    Article  PubMed  Google Scholar 

  32. Stanojlovic O, Rašić-Marković AA, Hrnčić D et al (2009) Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell Mol Neurobiol 29:329–339

    Article  PubMed  CAS  Google Scholar 

  33. Coenen AML, Van Luijtelaar ELJM (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33:635–655

    Article  PubMed  CAS  Google Scholar 

  34. Kostopoulos GK (2000) Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin Neurophysiol 111:S27–S38

    Article  PubMed  Google Scholar 

  35. Folbergrova J, Haugvicova R, Mares P (2002) Seizures induced by homocysteinic acid in immature rats are prevented by group III metabotropic glutamate receptor agonist (R, S)-4-­phosphonophenylglycine. Exp Neurol 180:46–54

    Article  Google Scholar 

  36. Thompson GA, Kilpatrick IC (1996) The neurotransmitter candidature of sulphur-containing excitatory amino acids in the mammalian central nervous system. Pharmacol Ther 72:25–36

    Article  PubMed  CAS  Google Scholar 

  37. Zieminska E, Stafiej A, Lazarewicz J (2003) Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurons. Neurochem Int 43:481–492

    Article  PubMed  CAS  Google Scholar 

  38. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:4–23

    Google Scholar 

  39. Betzen C, White R, Zehendner CM et al (2009) Oxidative stress upregulates the NMDA receptor on cardiovascular endothelium. Free Radic Biol Med 47:1212–1220

    Article  PubMed  CAS  Google Scholar 

  40. Zou CG, Zhao YS, Gao SY et al (2010) Homocysteine promotes proliferation and activation of microglia. Neurobiol Aging 31:2069–2079

    Article  PubMed  CAS  Google Scholar 

  41. Folbergrova J (1997) Anticonvulsant action of both NMDA and non-NMDA receptor antagonists against seizures induced by homocysteine in immature rats. Exp Neurol 145:442–450

    Article  PubMed  CAS  Google Scholar 

  42. Rašić-Marković A, Hrnčić D, Djurić D et al (2011) The effect of N-methyl-D-aspartate receptor antagonists on D, L-homocysteine thiolactone induced seizures in adult rats. Acta Physiol Hung 98(1):17–26

    Article  PubMed  Google Scholar 

  43. Hrnčić D, Rašić-Marković A, Krstic D et al (2010) The role of nitric oxide in homocysteine thiolactone-induced seizures in adult rats. Cell Mol Neurobiol 30:219–231

    Article  PubMed  Google Scholar 

  44. Hrnčić D, Rašić-Marković A, Krstić D et al (2012) Inhibition of the neuronal nitric oxide synthase potentiates homocysteine thiolactone-induced seizures in adult rats. Med Chem 8(1):59–64

    Article  PubMed  Google Scholar 

  45. Rašić-Marković A, Stanojlovic O, Hrnčić D et al (2009) The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol Cell Biochem 327:39–45

    Article  PubMed  Google Scholar 

  46. Malow B (1996) Sleep and epilepsy. Neurol Clin 14(4):765–789

    Article  PubMed  CAS  Google Scholar 

  47. Martins RC, Andersen ML, Tufik S (2008) The reciprocal interaction between sleep and type 2 diabetes mellitus: facts and perspectives. Braz J Med Biol Res 41:180–187

    Article  PubMed  CAS  Google Scholar 

  48. Hrnčić D, Rašić-Marković A, Macut D et al (2012) Relationship between homocysteine thiolactone – induced seizures and paradoxical sleep deprivation. In: 8th FENS forum of neuroscience, Barcelona, 14–18 July 2012, FENS abstracts, vol 6, p 060.15

    Google Scholar 

  49. Rašić-Marković A, Djuric D, Hrnčić D et al (2009) High dose of ethanol decreases total spectral power density in seizures induced by D, L-homocysteine thiolactone in adult rats. Gen Physiol Biophys S28:25–32

    Google Scholar 

Download references

Acknowledgments 

This work was supported by the Ministry of Education and Science, Grant No. 175032

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera Stanojlović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stanojlović, O., Hrnčić, D., Rašić-Marković, A., Šušić, V., Djuric, D. (2013). Homocysteine, Neurotoxicity and Hyperexcitability. In: Pierce, G., Mizin, V., Omelchenko, A. (eds) Advanced Bioactive Compounds Countering the Effects of Radiological, Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6513-9_6

Download citation

Publish with us

Policies and ethics