Skip to main content

Polyextremophiles and the Constraints for Terrestrial Habitability

  • Chapter
  • First Online:
Book cover Polyextremophiles

Abstract

Life on Earth occupies a multidimensional niche space that has yet to be fully described. The niche space of terrestrial life is knowable, and thus, it guides the search for hypothesized life. Since terrestrial life is constrained by its organic carbon foundation and requirement for water as a solvent, extremes in such environmental parameters as temperature, pH, and pressure will determine the geographic range in which life can survive. Most previous studies have focused on individual environmental variables, but in fact, each niche space occupies all parameters. Thus, to not only understand the limits of life on Earth but also use these constraints as a framework for the identification of potential abodes for life elsewhere necessitates an analysis of multiple environmental parameters simultaneously. After searching the published literature, we have compiled data about mechanisms of survival at individual and multiple extremes in order to model the niche space for terrestrial life. Published data are incomplete and inconsistent for a full analysis of all extremes and their polyextremophilic combinations, so after describing the breadth of the field, we focus on the two best-documented parameters, temperature and pH, to create a two-dimensional niche space model for future analysis. We conclude by pointing out that synthetic biology has the ability to expand the limits for life on Earth and thus increase the chances of overlap between terrestrial and potential extraterrestrial biota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2011) High pressures and eukaryotes. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 688–701

    Google Scholar 

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    PubMed  CAS  Google Scholar 

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    PubMed  CAS  Google Scholar 

  • Adams A (1985) Cryptobiosis in Chironomidae (Diptera) – two decades on. Antenna 8:58–61

    Google Scholar 

  • Albuquerque L, Simoes C, Nobre MF, Pino NM, Battista JR, Silva MT, Rainey FA, da Costa MS (2005) Trupera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiol Lett 247:161–169

    PubMed  CAS  Google Scholar 

  • Amend JP, Meyer-Dombard DR, Sheth SN, Zolotova N, Amend AC (2003) Palaeococcus helgesonii sp. nov., a facultatively anaerobic hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch Microbiol 179:394–401

    PubMed  CAS  Google Scholar 

  • Amo T, Paje MLF, Inagaki A, Ezaki S, Atomi H, Imanaka T (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121

    PubMed  CAS  Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the Great Oxidation Event? Science 317:1903–1906

    PubMed  CAS  Google Scholar 

  • Antunes A, Eder W, Fareleira P, Santos H, Huber R (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7:29–34

    PubMed  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008a) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587

    PubMed  CAS  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008b) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    PubMed  CAS  Google Scholar 

  • Aoshima M, Oshima T (1997) Purification and characterization of isocitrate dehydrogenase from a hyperthermophilic archaebacterium, Caldococcus noboribetus. Biochim Biophys Acta 1340:227–234

    PubMed  CAS  Google Scholar 

  • Aoshima M, Nishibe Y, Hasegawa M, Yamagishi A, Oshima T (1996) Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12. Gene 180:183–187

    PubMed  CAS  Google Scholar 

  • Arab H, Völker H, Thomm M (2000) Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol 50:2101–2108

    PubMed  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007

    PubMed  CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    PubMed  CAS  Google Scholar 

  • Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Micrbiol 54:2197–2201

    CAS  Google Scholar 

  • Barbier G, Godfroy A, Meunier J-R, Quérellou J, Cambon M-A, Lesongeur F, Grimont PAD, Raguénès G (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Evol Microbiol 49:1829–1837

    CAS  Google Scholar 

  • Bartlett DH, Kerman I (2011) Contributions of large-scale DNA sequencing efforts to the understanding of low temperature piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 704–718

    Google Scholar 

  • Bartlett DH, Lauro FM, Eloe EA (2007) Microbial adaptation to high pressure. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 333–348

    Google Scholar 

  • Bartlett DH, Ferguson G, Valle G (2008) Adaptations of the psychrotolerant piezophile Photobacterium profundum strain SS9. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington, DC, pp 319–337

    Google Scholar 

  • Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb 45:501–556

    Google Scholar 

  • Becquerel P (1950) La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l’alun de fer dans le vide les plus elévé. C R Hebd Séanc Acad Sci 231:261–263

    Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    PubMed  CAS  Google Scholar 

  • Belkin S, Jannasch HW (1986) A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Arch Microbiol 141:181–186

    Google Scholar 

  • Berner R, VandenBrooks J, Ward P (2007) Oxygen and evolution. Science 316:557–558

    PubMed  CAS  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21

    PubMed  Google Scholar 

  • Blotevogel KH, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum sp. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch Microbiol 142:211–217

    CAS  Google Scholar 

  • Blum JS, Burns-Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    CAS  Google Scholar 

  • Blum JS, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175:208–219

    PubMed  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Slesarev AI, Miroshnichenko ML, Svetlichnaya TP, Alekseev VA (1988) Characterization of Desulfurococcus amylolyticus n. sp. – a novel extremely thermophilic archaebacterium isolated from Kamchatka and Kurils hot springs. Mikrobiologiya 57:94–101

    CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Kostrikina NA, Chernych NA, Zavarzin GA (1990) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559

    CAS  Google Scholar 

  • Bonnot F, Houée-Levin C, Favaudon V, Nivière V (2010) Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide. Biochim Biophys Acta 1804:762–767

    PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfur-reducing archaebacteria. Syst Appl Microbiol 13:24–28

    Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356

    PubMed  CAS  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    PubMed  CAS  Google Scholar 

  • Cadet J, Douki T (2011) Molecular effects of UV and ionizing radiations on DNA. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, New York, pp 347–358

    Google Scholar 

  • Canfield DE, Habicht KS, Thamdrup B (2000) The Archaean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661

    PubMed  CAS  Google Scholar 

  • Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Evol Microbiol 48:1181–1185

    Google Scholar 

  • Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, da Costa MS (1996) Rubrobacter xyla­nophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Evol Micrbiol 46:460–465

    CAS  Google Scholar 

  • Casadei MA, Mañas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972

    PubMed  CAS  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:319–343

    Google Scholar 

  • Chang S-S, Kang D-H (2004) Alicyclobacillus spp. In the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit Rev Microbiol 30:55–74

    PubMed  Google Scholar 

  • Cherry RD, Heyraud M (1982) Evidence of high natural radiation doses in certain mid-water oceanic organisms. Science 218:54–56

    PubMed  CAS  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A 107:7835–7840

    PubMed  CAS  Google Scholar 

  • Chong SC, Liu Y, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek 81:263–270

    PubMed  CAS  Google Scholar 

  • Chrisostomos S, Patel BKC, Dwivedi PP, Denman SE (1996) Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Evol Microbiol 46:497–501

    Google Scholar 

  • Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete. Int J Syst Evol Microbiol 50:1909–1913

    PubMed  CAS  Google Scholar 

  • Clegg JS (1967) Metabolic studies of cryptobiosis in encysted embryos of Artemia salina. Comp Biochem Physiol 20:801–809

    CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    PubMed  CAS  Google Scholar 

  • Cook GM, Russell JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579

    PubMed  CAS  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans − the consummate survivor. Nat Rev Microbiol 3:882–892

    PubMed  CAS  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245

    PubMed  CAS  Google Scholar 

  • Daly MJ (2011) Deinococcus radiodurans: revising the molecular basis for radiation effects on cells. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 1117–1133

    Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028

    PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li S-MW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS One 5:e92

    Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang FG, Fukumoto R, Lee D-Y, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570

    PubMed  Google Scholar 

  • Darland G, Brock TD (1971) Bacillus acidocaldarius sp.nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15

    Google Scholar 

  • Dartnell L (2011) Biological constraints on habitability. Astron Geophys 52:25–28

    CAS  Google Scholar 

  • Das BK, Roy A, Singh S, Bhattacharya J (2009) Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Rev Environ Sci Biotechnol 8:257–274

    CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Bu’lock JD (1974) Effects of pH and temperature on the fatty acid composition of Bacillus acidocaldarius. J Bacteriol 117:212–214

    PubMed  Google Scholar 

  • De Rosa M, Gambacorta A, Bu’lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164

    PubMed  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    PubMed  CAS  Google Scholar 

  • Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114

    PubMed  CAS  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175

    PubMed  CAS  Google Scholar 

  • Doemel WN, Brock TD (1970) The upper temperature limit of Cyanidium caldarium. Arch Mikrobiol 72:326–332

    PubMed  CAS  Google Scholar 

  • Dole M (1965) The natural history of oxygen. J Gen Physiol 49:5–27

    PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088

    PubMed  CAS  Google Scholar 

  • Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T (2000) Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218

    PubMed  CAS  Google Scholar 

  • Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221–229

    PubMed  CAS  Google Scholar 

  • Doyère PLN (1842) Memories sur les tardigrades. Sur le facilité que possedent les tardigrades, les rotifers, les an- guillules des toits et quelques autres of animalcules, de revenir à la vie après été completement déssechées. Ann Sci Nat (Ser 2) 18(5)

    Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. Exp Biol 201:1043–1050

    CAS  Google Scholar 

  • Duffaud GD, d’Hennezel OB, Peek AS, Reysenbach A-L, Kelly RM (1998) Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 21:40–49

    PubMed  CAS  Google Scholar 

  • Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318

    PubMed  Google Scholar 

  • Edney EB (1977) Water balance in land arthropods, vol 9: Zoophysiology and ecology. Springer, New York, 282 pp

    Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    PubMed  CAS  Google Scholar 

  • Eggermont H, Verschuren D, Fagot M, Rumes B, van Bocxlaer B, Kröpelin S (2008) Aquatic community response in a groundwater-fed desert lake to Holocene desiccation of the Sahara. Quat Sci Rev 27:2411–2425

    Google Scholar 

  • Ellenby C (1969) Dormancy and survival in nematodes. Symp Soc Exp Biol 23:83–97

    PubMed  CAS  Google Scholar 

  • Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397

    PubMed  CAS  Google Scholar 

  • Enami I, Adachi H, Shen J-R (2010) Mechanisms of acido-tolerance and characteristics of photosystems in an acidophilic and thermophilic red alga, Cyanidium caldarium. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 373–389

    Google Scholar 

  • Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Evol Bacteriol 45:454–461

    CAS  Google Scholar 

  • Engle M, Li Y, Rainey F, DeBlois S, Mai V, Reichert A, Mayer F, Messner P, Wiegel J (1996) Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033

    PubMed  CAS  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    CAS  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genet Res 15:1336–1343

    CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    PubMed  CAS  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, Da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation- resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    PubMed  CAS  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    PubMed  CAS  Google Scholar 

  • Ferris MJ, Sheehan KB, Kühl M, Cooksey K, Wigglesworth-Cooksey B, Harvey R, Henson JM (2005) Algal species and light microenvironments in a low-pH, geothermal microbial mat community. Appl Environ Microbiol 71:7164–7171

    PubMed  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61

    CAS  Google Scholar 

  • Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Mircrobiol 8:106–113

    Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    PubMed  CAS  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, de Macario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp.nov. Syst Appl Microbiol 15:573–581

    Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, de Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072

    PubMed  CAS  Google Scholar 

  • Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60

    CAS  Google Scholar 

  • Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357

    PubMed  CAS  Google Scholar 

  • Gajardo GM, Beardmore JA (2012) The brine shrimp Artemia: adapted to critical life conditions. Front Physiol 3:1–8

    Google Scholar 

  • Galhardo RS, Rosenberg SM (2009) Extreme genome repair. Cell 136:998–1000

    PubMed  CAS  Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Lett 87:297–308

    Google Scholar 

  • Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia. Extremophiles 8:309–316

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284

    CAS  Google Scholar 

  • Godfroy A, Meunier J-R, Guezennec J, Lesongeur F, Raguénès G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119

    PubMed  CAS  Google Scholar 

  • Godfroy A, Lesongeur F, Raguénès G, Quérellou J, Antoine E, Meunier J-R, Guezennec J, Barbier G (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626

    PubMed  CAS  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006

    PubMed  CAS  Google Scholar 

  • González JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    PubMed  Google Scholar 

  • González JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM, Robb FT (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101

    PubMed  Google Scholar 

  • Gonzalez O, Oberwinkler T, Mansueto L, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D (2010) Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis. PLoS Comput Biol 6:e1000799

    PubMed  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    PubMed  CAS  Google Scholar 

  • Graham JB, Dudley R, Aguilar NM, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120

    CAS  Google Scholar 

  • Grogan D, Palm P, Zillig W (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599

    PubMed  CAS  Google Scholar 

  • Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates: stabilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468

    PubMed  CAS  Google Scholar 

  • Grote R, Li L, Tamaoka J, Kato C, Horikoshi K, Antranikian G (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62

    PubMed  CAS  Google Scholar 

  • Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool Lond 257:181–187

    Google Scholar 

  • Gutierrez CM, Kamekura M, Holmes ML, Dyall-Smith ML, Ventosa A (2002) Taxonomic characterization of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6:479–483

    PubMed  Google Scholar 

  • Gutmann A (2010) New directions: the ethics of synthetic biology and emerging technologies. The Presidential Commission for the Study of Bioethical Issues. http://bioethics.gov/cms/synthetic-biology-report. Accessed 10 June 2012

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic, New York, 356 pp

    Google Scholar 

  • Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314

    PubMed  CAS  Google Scholar 

  • Hallberg KB, Lindström EB (1994) Characterization of Thiobacillus caldus, sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456

    PubMed  CAS  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson KB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    PubMed  CAS  Google Scholar 

  • He Z-G, Zhong H, Li Y (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163

    PubMed  CAS  Google Scholar 

  • Hensel R, Matussek K, Michalke K, Tacke L, Tindall BJ, Kohlhoff M, Siebers B, Dielenschneider J (1997) Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. Syst Appl Microbiol 20:102–110

    Google Scholar 

  • Heyrman J, Balcaen A, De Vos P, Swings J (2002) Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Micrbiol 52:2049–2054

    CAS  Google Scholar 

  • Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BHA (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitrati­reducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280

    PubMed  CAS  Google Scholar 

  • Holden JF (2009) Extremophiles: hot environments. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 127–146

    Google Scholar 

  • Hoover RB, Pikuta EV, Bej AK, Marsic D, Whitman WB, Tang J, Krader P (2003) Spirochaeta ameri­cana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821

    PubMed  CAS  Google Scholar 

  • Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118

    Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101

    CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111

    CAS  Google Scholar 

  • Huber G, Drobner E, Huber H, Stetter KO (1992a) Growth by aerobic oxidation of molecular hydrogen in archaea – a metabolic property so far unknown for this domain. Syst Appl Microbiol 15:502–504

    Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992b) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351

    Google Scholar 

  • Huber R, Stohr J, Honenhaus S, Rachel R, Burggraf S, Jannasch HW, Stetter KO (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading hyperthermophilic archaeum from deep-sea hydrothermal environment. Arch Microbiol 164:255–264

    CAS  Google Scholar 

  • Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfate reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380

    CAS  Google Scholar 

  • Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998a) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38

    PubMed  CAS  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998b) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    PubMed  CAS  Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000a) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100

    PubMed  Google Scholar 

  • Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000b) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    CAS  Google Scholar 

  • Inoue K, Itoh T, Ohkuma M, Kogure K (2011) Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61:942–946

    PubMed  CAS  Google Scholar 

  • Ishigaki Y, Nakamura Y, Oikawa Y, Yano Y, Kuwabata S, Nakagawa H, Tomosugi N, Takegami T (2012) Observation of live ticks (Haemaphysalis flava) by scanning electron microscopy under high vacuum pressure. PLoS One 7:e32676

    PubMed  CAS  Google Scholar 

  • Ishikawa H (1935) Hydrolysis of nucleotides by acid. J Biochem 22:385–395

    CAS  Google Scholar 

  • Ishikawa M, Ishizaki S, Yamamoto Y, Yamasato K (2002) Paraliobacillus ryukyuensis gen. nov., sp. nov., a new gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279

    PubMed  CAS  Google Scholar 

  • Ishikawa M, Nakajima K, Yanagi M, Yamamoto Y, Yamasato K (2003) Marinilactibacillus psychrotolerans gen. nov., sp. nov. a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53:711–720

    PubMed  CAS  Google Scholar 

  • Ito M, Fujinami S, Terahara N (2011) Bioenergetics: cell motility and chemotaxis of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 141–162

    Google Scholar 

  • Itoh T, Suzuki K-I, Sanchez P, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Evol Microbiol 49:1157–1163

    CAS  Google Scholar 

  • Itoh T, Suzuki K, Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot spring in Japan. Int J Syst Evol Microbiol 52:1097–1104

    PubMed  CAS  Google Scholar 

  • Jackson TJ, Ramaley RF, Meinschein WG (1973) Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J Syst Evol Microbiol 23:28–36

    Google Scholar 

  • Jan R-L, Wu J, Chaw S-M, Tsai C-W, Tsen S-D (1999) A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Evol Microbiol 49:1809–1816

    CAS  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919

    PubMed  CAS  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach A-L, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589

    PubMed  Google Scholar 

  • Jochimsen B, Peinemann-Simon S, Völker H, Stüben D, Botz R, Stoffers P, Dando PR, Thomm M (1997) Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece. Extremophiles 1:67–73

    PubMed  CAS  Google Scholar 

  • Johnson DB (2006) Biohydrometallurgy and the environment: intimate and important interplay. Hydrometallurgy 83:153–166

    CAS  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003a) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    PubMed  CAS  Google Scholar 

  • Jolivet E, Matsunaga F, Ishino Y, Forterre P, Prieur D, Myllykallio H (2003b) Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation. J Bacteriol 185:3958–3961

    PubMed  CAS  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    PubMed  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B 146:456–460

    PubMed  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731

    PubMed  Google Scholar 

  • Joshi AA, Kanekar PP, Kelkar AS, Sarnaik SS, Shouche Y, Wani A (2007) Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365. J Basic Microbiol 47:213–221

    PubMed  CAS  Google Scholar 

  • Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles – taxonomy, diversity, physiology, and applications. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 1–34

    Google Scholar 

  • Kao OH, Edwards MR, Berns DS (1975) Physical-chemical properties of C-phycocyanin isolated from an acido-thermophilic eukaryote, Cyanidium caldarium. Biochem J 147:63–70

    PubMed  CAS  Google Scholar 

  • Kaplan D, Cohen Z, Abeliovich A (1986) Optimal growth conditions for Isochrysis galbana. Biomass 9:37–48

    Google Scholar 

  • Karam PA, Leslie SA (1999) Calculations of background beta-gamma radiation dose through geologic time. Health Phys 77:662–667

    PubMed  CAS  Google Scholar 

  • Kashefi K, Lovley D (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geo 169:289–298

    Google Scholar 

  • Kashefi K, Lovley D (2003) Extending the upper temperature limit for life. Science 301:934

    PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    PubMed  CAS  Google Scholar 

  • Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742

    PubMed  CAS  Google Scholar 

  • Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early Earth. Philos Trans R Soc B 361:1733–1742

    CAS  Google Scholar 

  • Kato C (2011) Distribution of piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 643–656

    Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S-I, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K-I, Yoshizawa T, Nakamura Y, Robb FT, Horikoshi K, Masuchi Y, Shizuya H, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76

    PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-No K, Takahashi M, Sekine M, Baba S-I, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudohm Y, Yamazaki J, Kushida N, Oguchi A, Aoki K-I, Kubota K, Nakamura Y, Nomura N, Sako Y, Kikuchi H (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101

    PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Jin-No K, Takahashi M, Sekine M, Baba S-I, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Hishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res 8:123–140

    PubMed  CAS  Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191

    PubMed  CAS  Google Scholar 

  • Keller M, Braun F-J, Dirmeieir R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on poly-sulfide at alkaline pH. Arch Microbiol 64:390–395

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    PubMed  Google Scholar 

  • Kendrick M, Kral T (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551

    PubMed  CAS  Google Scholar 

  • Klenk H-P, Clayton RA, Tomb J-F, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236

    CAS  Google Scholar 

  • Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034

    PubMed  CAS  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    PubMed  CAS  Google Scholar 

  • Koshima SA (1984) A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227

    Google Scholar 

  • Kostyukova AS, Gongadze GM, Polosina YY, Bonch-Osmolovskaya EA, Miroshnichenko ML, Chernyh NA, Obraztsova MV, Svetlichny VA, Messner P, Sleytr UB, L’Haridon S, Jeanthon C, Prieur D (1999) Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of “Caldococcus litoralis” Z-1301 as Thermococcus litoralis Z-1301. Extremophiles 3:239–246

    PubMed  CAS  Google Scholar 

  • Krulwich TA (1995) Alkaliphiles: “Basic” molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DE (1996) Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta 1275:21–26

    PubMed  Google Scholar 

  • Krulwich TA, Ito M, Hicks DB, Gilmour R, Guffanti AA (1998) pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2:217–222

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB (2011a) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 119–139

    Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011b) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    PubMed  CAS  Google Scholar 

  • Kumar S, Arya S, Nussinov R (2007) Temperature-dependent molecular adaptation features in proteins. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 75–85

    Google Scholar 

  • Kurata A, Miyazaki M, Kobayashi T, Nogi Y, Horikoshi K (2007) Alkalimonas collagenimarina sp. nov., a psychrotolerant, obligate alkaliphile isolated from deep-sea sediment. Int J Syst Evol Microbiol 57:1549–1553

    PubMed  CAS  Google Scholar 

  • Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456

    PubMed  Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247

    CAS  Google Scholar 

  • L’Haridon S, Reysenbach A-L, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935

    PubMed  Google Scholar 

  • Langdahl BR, Ingvorsen K (1997) Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N). FEMS Microbiol Ecol 23:275–283

    CAS  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    PubMed  CAS  Google Scholar 

  • Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105

    Google Scholar 

  • Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845

    PubMed  CAS  Google Scholar 

  • Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int J Syst Bacteriol 43:450–460

    Google Scholar 

  • Liu YQ, Yao TD, Kang SC, Jiao NZ, Zeng YH, Huang SJ, Luo TW (2007) Microbial community structure in major habitats above 6000 m on Mount Everest. Chin Sci Bull 52:2350–2357

    Google Scholar 

  • Liu Y, Beer LL, Whitman WB (2012) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20:251–258

    PubMed  CAS  Google Scholar 

  • Lizama C, Monteoliva-Sánchez M, Suárez-García A, Roselló-Mora R, Aguilera M, Campos V, Ramos-Cormenzana A (2002) Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern Chile. Int J Syst Evol Microbiol 52:149–155

    PubMed  CAS  Google Scholar 

  • Lombard M, Touati D, Fontecave M, Nivière V (2000) Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum. J Biol Chem 275:27021–27026

    PubMed  CAS  Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24:857–863

    Google Scholar 

  • Lovley DR, Kashefi K, Vargas M, Tor JM, Blunt-Harris EL (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol 169:289–298

    CAS  Google Scholar 

  • Luo H, Robb FT (2011) Thermophilic protein folding systems. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 583–599

    Google Scholar 

  • Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, Steenbergen RP, Jones BE (2004) Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8:193–200

    PubMed  CAS  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    PubMed  CAS  Google Scholar 

  • Maestrojuán GM, Boone DR (1991) Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol 41:267–274

    Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    PubMed  Google Scholar 

  • Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811

    PubMed  CAS  Google Scholar 

  • Marteinsson VT, Birrien J-L, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 49:351–359

    Google Scholar 

  • Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514

    PubMed  CAS  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    PubMed  CAS  Google Scholar 

  • Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Evol Microbiol 38:139–142

    CAS  Google Scholar 

  • Matin A (1990) Keeping a neutral cytoplasm: the bioenergetics of obligate acidophiles. FEMS Microbiol Rev 75:307–318

    CAS  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  • McAlester AL (1970) Animal extinctions, oxygenic consumption, and atmospheric history. J Paleontol 44:405–409

    Google Scholar 

  • Meier-Stauffer K, Busse H-J, Rainey FA, Burghardt J, Scheberl A, Hollaus F, Kuen B, Makristathis A, Sleytr UB, Messner P (1996) Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Evol Microbiol 46:532–541

    CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57

    PubMed  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2011) Halophiles exposed concomitantly to multiple stressors: adaptive mechanisms of halophilic alkalithermophiles. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Berlin, pp 249–273

    Google Scholar 

  • Mesbah NM, Hendrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512

    PubMed  CAS  Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74:270–281

    PubMed  CAS  Google Scholar 

  • Mesbah NM, Dalin E, Goodwin LA, Nolan M, Pitluck S, Chertkov O, Brettin TS, Han J, Larimer FW, Land ML, Hauser LJ, Kyripides NC, Wiegel J (2011) Complete genome sequence of the anaerobic halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT. J Bacteriol 193:4023–4024

    PubMed  Google Scholar 

  • Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611

    PubMed  CAS  Google Scholar 

  • Miñana-Galbis D, Pinzón DL, Lorén G, Manresa A, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:1600–1604

    PubMed  Google Scholar 

  • Miroshnichenko M (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Biomed Life Sci 10:85–96

    Google Scholar 

  • Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29

    PubMed  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S (2003) Acaryochloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing chl d as a major pigment. J Phycol 39:1247–1253

    CAS  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    PubMed  CAS  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566

    PubMed  CAS  Google Scholar 

  • Moser M, Weisse T (2011) Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes. J Plankton Res 33:1023–1032

    PubMed  Google Scholar 

  • Mozetic M, Vratnica Z (2011) Destruction of Bacillus stearothermophilus bacteria by weakly ionized low pressure cold oxygen plasma. Vacuum 85:1080–1082

    CAS  Google Scholar 

  • Müller V, Köcher S (2011) Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 383–400

    Google Scholar 

  • Nakagawa S, Takai K, Horikoshi K, Sako Y (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335

    PubMed  CAS  Google Scholar 

  • Nakatani M, Ezaki S, Atomi H, Imanaka T (2000) A DNA ligase from a hyperthermophilic archaeon with unique cofactor specificity. J Bacteriol 182:6424–6433

    PubMed  CAS  Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Google Scholar 

  • Niederberger TD, Götz DK, Mcdonald IR, Rominus RS, Morgan HW (2006) Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol 56:965–971

    PubMed  CAS  Google Scholar 

  • Nobre MF, Carreto L, Wait R, Tenreiro S, Fernandes O, Sharp RJ, da Costa MS (1996a) Fatty acid composition of the species of the genera Thermus and Meiothermus. Syst Appl Microbiol 19:303–311

    CAS  Google Scholar 

  • Nobre MF, Trüper HG, da Costa MS (1996b) Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus. Int J Syst Bacteriol 46:604–606

    Google Scholar 

  • Ntougias S, Russell NJ (2001) Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 51:1161–1170

    PubMed  CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Clavero E, Muyzer G (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226

    PubMed  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    PubMed  CAS  Google Scholar 

  • Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 76:2115–2121

    PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer, Dordrecht, pp 297–299

    Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    PubMed  Google Scholar 

  • Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52:1831–1835

    PubMed  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    PubMed  CAS  Google Scholar 

  • Paper W, Jahn U, Hohn MJ, Kronner M, Näther DJ, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of “Nanoarchaeum equitans”. Int J Syst Evol Microbiol 57:803–808

    PubMed  CAS  Google Scholar 

  • Parhad NM, Rao NU (1974) Effect of pH on survival of Escherichia coli. Water Pollut Control 46:980–986

    Google Scholar 

  • Parrilli E, Sannino F, Marino G, Tutino ML (2011) Life in icy habitats: new insights supporting panspermia theory. Rend Fis Acc Lincei 22:375–383

    Google Scholar 

  • Patel BKC, Morgan HW, Daniel RM (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69

    CAS  Google Scholar 

  • Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70.1–19

    Google Scholar 

  • Phillips RW, Wiegel J, Berry CJ, Filermans C, Peacock AD, White DC, Shimkets LJ (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52:933–938

    PubMed  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    PubMed  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007a) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    PubMed  CAS  Google Scholar 

  • Pikuta EV, Marsic D, Itoh T, Bej AK, Tang J, Whitman WB, Ng JD, Garriott OK, Hoover RB (2007b) Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:1612–1618

    PubMed  CAS  Google Scholar 

  • Pledger RJ, Baross JA (1991) Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures of up to 110 °C isolated from a submarine hydrothermal vent environment. J Gen Microbiol 137:203–211

    Google Scholar 

  • Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253

    Google Scholar 

  • Prokofeva MI, Miroshnichenko ML, Kostrikina NA, Chernyh NA, Kuznetsov BB, Tourova TP, Bonch-Osmolovskaya EA (2000) Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50:2001–2008

    PubMed  Google Scholar 

  • Rahm G (1923) Biologische und physiologische Beiträge zur Kenntnis der Moosfauna. Z Allg Physiol 20:1–34

    Google Scholar 

  • Rahm G (1937) A new order of tardigrades from the hot springs of Japan (Furu-yu section, Unzen). Annot Zool Jpn 16:345–352

    Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623

    CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau M-L, Patel BKC, Prensier G, Egan A, Garcia J-L, Ollivier B (1995a) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil- producing well. Int J Syst Bacteriol 45:308–314

    PubMed  CAS  Google Scholar 

  • Ravot G, Ollivier B, Magot M, Patel BKC, Crolet J, Fardeau M-L, Garcia J-L (1995b) Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl Environ Microbiol 61:2053–2055

    PubMed  CAS  Google Scholar 

  • Ravot G, Ollivier B, Patel B, Magot M, Garcia J-L (1996) Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int J Syst Evol Microbiol 46:321–323

    Google Scholar 

  • Raymond JC, Sistrom WR (1969) Ectothiorhodospira halophila: a new species of the genus Ectothiorhodospira. Arch Mikrobiol 69:121–126

    PubMed  CAS  Google Scholar 

  • Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 409–426

    Google Scholar 

  • Rice CV, Wickham JR, Eastman MA, Harrison W, Pereira MP, Brown ED (2008) Magnetic resonance tells microbiology where to go; bacterial teichoic acid protects liquid water at sub-zero temperatures. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Instruments, methods, and missions for astrobiology XI. Proceedings of SPIE 7097. SPIE Press, San Diego, pp 1–10

    Google Scholar 

  • Rijkenberg MJA, Kort R, Hellingwerf KJ (2001) Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 175:369–375

    PubMed  CAS  Google Scholar 

  • Robb FT, Maeder DL (1998) Novel evolutionary histories and adaptive features of proteins from hyperthermophiles. Curr Opin Biotechnol 9:288–291

    PubMed  CAS  Google Scholar 

  • Romanenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E (2002a) Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297

    PubMed  CAS  Google Scholar 

  • Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E (2002b) Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. Int J Syst Evol Microbiol 52:1767–1772

    PubMed  CAS  Google Scholar 

  • Rothschild LJ (2010) A powerful toolkit for synthetic biology: over 3.8 billion years of evolution. Bioessays 32:304–313

    PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    PubMed  CAS  Google Scholar 

  • Roulling F, Piette F, Cipolla A, Struvay C, Feller G (2011) Psychrophilic enzymes: cool responses to chilly problems. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 891–913

    Google Scholar 

  • Saffary R, Nandakumar R, Spencer D, Robb FT, Davila JM, Swartz M, Ofman L, Thomas RJ, DiRuggiero J (2002) Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol Lett 215:163–168

    PubMed  CAS  Google Scholar 

  • Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996a) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077

    PubMed  CAS  Google Scholar 

  • Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y (1996b) Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Evol Microbiol 46:1099–1104

    CAS  Google Scholar 

  • Sako Y, Nunoura T, Uchida A (2001) Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 oC. Int J Syst Evol Microbiol 51:303–309

    PubMed  CAS  Google Scholar 

  • Santos H, Lamosa P, Borges N, Gonçalves LG, Pais T, Rodrigues MV (2011) Organic compatible solutes of prokaryotes that thrive in hot environments: the importance of ionic compounds for thermostabilization. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 497–520

    Google Scholar 

  • Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4

    PubMed  Google Scholar 

  • Schill RO (2010) Anhydrobiotic abilities of tardigrades. In: Lubzens E, Cerdà J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Heidelberg, pp 133–146

    Google Scholar 

  • Schleper C, Pühler G, Klenk H-P, Zillig W (1996) Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46:814–816

    Google Scholar 

  • Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Völker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431

    PubMed  CAS  Google Scholar 

  • Scholz T, Demharter W, Hensel R, Kandler O (1987) Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96

    CAS  Google Scholar 

  • Seckbach J, Kaplan IR (1973) Growth pattern and 13C/12C isotope fractionation of Cyanidium caldarium and hot spring algal mats. Chem Geol 12:161–169

    CAS  Google Scholar 

  • Seckbach J, Libby WF (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Space Life Sci 2:121–143

    PubMed  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

    Google Scholar 

  • Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 41:495–501

    Google Scholar 

  • Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854

    CAS  Google Scholar 

  • Shcherbakova VA, Chuvil’skaya NA, Rivkina EM, Pecheritsyna SA, Suetin SV, Laurinavichius KS, Lysenko AM, Gilichinsky DA (2009) Novel halotolerant bacterium from cryopeg in permafrost: description of Psychrobacter muriicola sp. nov. Mikrobiologiia 78:98–105

    PubMed  CAS  Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50–61

    PubMed  CAS  Google Scholar 

  • Singh N, Kendall MM, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538

    PubMed  CAS  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    PubMed  CAS  Google Scholar 

  • Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, Berlin, 275 pp

    Google Scholar 

  • Spijkerman E, Barua D, Gerloff-Elias A, Kern J, Gaedke U, Heckathorn SA (2007) Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11:551–562

    PubMed  CAS  Google Scholar 

  • Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer K-H (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496

    Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    PubMed  CAS  Google Scholar 

  • Stedmen KM, She Q, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W (2000) pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: Insights into recombination and conjugation in crenarchaeota. J Bacteriol 182:7014–7020

    Google Scholar 

  • Steiner G, Albin FE (1946) Resuscitation of the nematode Tylenchus polyhypnus n. sp., after almost 39 years’ dormancy. J Wash Acad Sci 36:97–99

    PubMed  CAS  Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Google Scholar 

  • Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Jane-Covic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl Bakt Hyg I Abt Orig C 2:166–178

    CAS  Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur-reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551

    PubMed  CAS  Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Lett 75:117–124

    Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Google Scholar 

  • Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryotic life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34

    PubMed  Google Scholar 

  • Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44

    PubMed  Google Scholar 

  • Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short – and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137

    PubMed  CAS  Google Scholar 

  • Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306:284–287

    PubMed  CAS  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    PubMed  CAS  Google Scholar 

  • Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17

    PubMed  CAS  Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

    PubMed  CAS  Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629

    PubMed  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    PubMed  CAS  Google Scholar 

  • Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ito T, Yamasato K, Shioda M (1996) Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382

    PubMed  CAS  Google Scholar 

  • Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62:605–611

    PubMed  CAS  Google Scholar 

  • Than K (2011) Why giant bugs once roamed the Earth. Nat Geo 1:1–3

    Google Scholar 

  • Thomas AS, Elcock AH (2004) Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperature. J Am Chem Soc 126:2208–2214

    PubMed  CAS  Google Scholar 

  • Tor JM, Kashefi K, Lovley DR (2001) Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67:1363–1365

    PubMed  CAS  Google Scholar 

  • Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 15–43

    Google Scholar 

  • Toueille M, Sommer S (2011) Life in extreme conditions: Deinococcus radiodurans, an organisms able to survive prolonged desiccation and high doses of ionizing radiation. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, New York, pp 347–358

    Google Scholar 

  • Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258

    CAS  Google Scholar 

  • Trevors JT, Bej AK, van Elsas JD (2012) Hypothesized microenvironments for the origin of microbial life on Earth. In: Seckbach J (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 775–795

    Google Scholar 

  • United Nations (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations sales publications E.00.IX.3 and E.00.IX.4. United Nations, New York

    Google Scholar 

  • van de Vossenberg JLCM, Driessen AJM, Zillig W, Konings WN (1998) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74

    PubMed  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, the BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    PubMed  Google Scholar 

  • Vanlint D, Michiels CW, Aertsen A (2011) Piezophysiology of the model bacterium Escherichia coli. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 669–686

    Google Scholar 

  • Verberk WCEP, Bilton DT (2011) Can oxygen set thermal limits in an insect and drive gigantism? PLoS One 6:e22610

    PubMed  CAS  Google Scholar 

  • Vetriani C, Maeder DL, Tolliday N, Yip KS-P, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100 °C: a key role for ionic interactions. Proc Natl Acad Sci U S A 95:12300–12305

    PubMed  CAS  Google Scholar 

  • Von Klein D, Arab H, Völker H, Thomm M (2002) Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103–110

    Google Scholar 

  • Vorholt J, Kunow J, Stetter KO, Thauer RK (1995) Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 163:112–118

    CAS  Google Scholar 

  • Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452

    PubMed  CAS  Google Scholar 

  • Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis, gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    PubMed  Google Scholar 

  • Waksman SA, Joffe JS (1922) Microorganisms concerned in the oxidation of sulfur in the soil II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J Bacteriol 7:239–256

    PubMed  CAS  Google Scholar 

  • Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006) Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki, on radiation tolerance. Int J Radiat Biol 82:587–592

    PubMed  CAS  Google Scholar 

  • Weinstein RN, Palm ME, Johnstone K, Wynn-Wiliiams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89:706–711

    Google Scholar 

  • West JB, Lahiri S, Maret KH, Peters RM Jr, Pizzo CJ (1983) Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J Appl Physiol 54:1188–1194

    PubMed  CAS  Google Scholar 

  • Wharton DA, Marshall AT (2002) Changes in surface features during desiccation of the anhydrobiotic plant parasitic nematode Ditylenchus dipsaci. Tissue Cell 34:81–87

    PubMed  Google Scholar 

  • Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267

    PubMed  CAS  Google Scholar 

  • Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 81–97

    Google Scholar 

  • Wiegel J, Ljundgahl LG (1982) Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. J Bacteriol 151:507–509

    PubMed  Google Scholar 

  • Wisotzkey JD, Jurtshuk P Jr, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269

    PubMed  CAS  Google Scholar 

  • Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582

    Google Scholar 

  • Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Chernikova TN, Gentile G, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN (2001) Alcalilimnicola halodurans gen. nov., sp. nov., an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 51:2133–2143

    PubMed  CAS  Google Scholar 

  • Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J, Park YH (2002) Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130

    PubMed  CAS  Google Scholar 

  • Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411

    PubMed  CAS  Google Scholar 

  • Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383

    PubMed  CAS  Google Scholar 

  • Zaccai G (2011) Molecular adaptations to life in high salt: lessons from Haloarcula marismortui. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, New York, pp 375–388

    Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    PubMed  CAS  Google Scholar 

  • Zerkle AL, Claire MW, Domagal-Goldman SD, Farquhar J, Poulton SW (2012) A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat Geosci 5:359–363

    CAS  Google Scholar 

  • Zhang W, Xue Y, Ma Y, Zhou P, Ventosa A, Grant WD (2002) Salinicoccus alkaliphilus sp. nov., a novel alkaliphile and moderate halophile from Baer Soda Lake in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 52:789–793

    PubMed  CAS  Google Scholar 

  • Zhang P, Liu S, Cong B, Wu G, Liu C, Lin X, Shen J, Huang X (2011) A novel omega-3 fatty acid desaturase involve in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol 13:393–401

    PubMed  CAS  Google Scholar 

  • Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch Microbiol 50:178–183

    Google Scholar 

  • Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2001) Halonatronum saccharophilum gen. nov. sp. nov.: a new haloalkaliphilic bacterium of the order Haloanaerobiales from Lake Magadi. Mikrobiologiya 70:64–72

    CAS  Google Scholar 

  • Zhou Y, Xu J, Xu L, Tindall B (2009) Falsibacillus pallidus to replace the homonym Bacillus pallidus Zhou et al. 2008. Int J Syst Evol Microbiol 59:3176–3180

    PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus “Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt Orig C 3:304–317

    CAS  Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderi S, Janekovic D, Stetter KO, Klenk HP (1983a) The archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87

    PubMed  CAS  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schäer W, Reiter WD (1983b) The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94

    PubMed  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Bock A, Gropp F, Rettenberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature 313:789–791

    PubMed  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Bock A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203

    CAS  Google Scholar 

  • Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9:62–70

    CAS  Google Scholar 

  • Zillig W, Holz I, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965

    PubMed  CAS  Google Scholar 

  • Zillig W, Arnold HP, Holz I, Prangishvili D, Schweier A, Stedman K, She Q, Phan H, Garrett R, Kristjansson JK (1998) Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2:131–140

    PubMed  CAS  Google Scholar 

  • ZoBell CE (1952) Bacterial life at the bottom of the Philippine Trench. Science 115:507–508

    PubMed  CAS  Google Scholar 

  • Zychlinsky E, Matin A (1983) Cytoplasmic pH homeostasis in an acidophilic bacterium, Thiobacillus acidophilus. J Bacteriol 156:1352–1355

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Capece .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Capece, M.C. et al. (2013). Polyextremophiles and the Constraints for Terrestrial Habitability. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_1

Download citation

Publish with us

Policies and ethics