Skip to main content

Ecosystem Carbon and Soil Biodiversity

  • Chapter
  • First Online:

Abstract

Soils harbor a great diversity and abundance of soil biota, but because it is mostly invisible to our naked eye we are only just starting to discover it. This is not surprising given the estimated diversity of up to 106 species of bacteria per g of soil. The soil biota play key roles in ecosystem functions and hence in ecosystem services provided to humans, such as sustaining primary productivity through recycling plant nutrients and pest control. Soil biodiversity in turn depends on plants, directly through the influence by living plants and indirectly by after-life effects of dead plants, as primary producers provide energy and nutrients and create soil habitats. The soil food web (comprising bacteria, actinomycetes, fungi, soil fauna) itself represents only about 2 % of the total organic soil carbon yet it is central to soil carbon (C) sequestration through its impact on soil C turnover and stabilization by chemical and physical processes. However, how much or which soil biodiversity is needed to promote soil C sequestration remains an open question, yet key to develop management strategies for promoting soil C sequestration and biodiversity. Soils are of major importance in terms of ecosystem C given that terrestrial ecosystems contain more than 2,100 Pg organic C globally of which 1,500 Pg is located in soil. Moreover soils can serve as C source, i.e. C loss, or C sink, i.e. C sequestration in soil, and this balance is strongly dependent on soil management and soil biodiversity. Here we provide an overview of the current knowledge on the interdependency of soil biodiversity and ecosystem/soil C through interactions with primary producers. Overall most studies found that soil functional composition rather than species richness per se regulates soil C sequestration, through promoting ecosystem nutrient use efficiency, soil (micro)aggregate formation and soil depth development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BVOC:

Biogenic Volatile Organic Compound

C:

Carbon

cm:

Centimeter – 10−2 m

C: N:

Carbon to Nitrogen ratio

CO2 :

Carbon Dioxide

DOM:

Dissolved Organic Matter

g:

Gram

GSBI:

Global Soil Biodiversity Initiative

GSP:

Global Soil Partnership

mm:

Millimeter – 10−3 m

N:

Nitrogen

OM:

Organic Matter

P:

Phosphorus

Pg:

Petagram – 1015 g

SOC:

Soil Organic Carbon

SOM:

Soil Organic Matter

μm:

Micro meter – 10−6 m

References

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562

    CAS  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    PubMed  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    PubMed  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    CAS  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    PubMed  CAS  Google Scholar 

  • Blanchart E, Albrecht A, Alegre J, Duboisset A, Gilot C, Pashanasi B, Lavelle P, Brussaard L (1999) Effects of earthworms on soil structure and physical properties. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI Publishing, Wallingford, pp 149–172

    Google Scholar 

  • Boag B, Yeates GW (1998) Soil nematode biodiversity in terrestrial ecosystems. Biodiv Conserv 7:617–630

    Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    CAS  Google Scholar 

  • Briones MJI (2006) Enchytraeidae. In: Lal R (ed) Encyclopedia of soil science. Taylor and Francis, New York, pp 514–518

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domain. Eur J Soil Biol 36:177–198

    Google Scholar 

  • Brussaard L (2012) Ecosystem services provided by soil biota. In: Wall DA (ed) The oxford handbook of soil ecology & ecosystem services. Oxford University Press, Oxford

    Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Google Scholar 

  • Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M (2010) Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr Opin Environ Sustain 2:34–42

    Google Scholar 

  • Brussaard L, Aanen DK, Briones MJI, Decaëns T, De Deyn GB, Fayle TM, James SW, Nobre T (2012) Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: global to local patterns and implications for ecosystem functioning and services and global environmental change impacts. In: Wall DA (ed) The oxford handbook of soil ecology & ecosystem services. Oxford University Press, Oxford

    Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Google Scholar 

  • Carbajo V, den Braber B, van der Putten WH, De Deyn GB (2011) Enhancement of late successional plants on ex-arable land by soil inoculations. PLoS One 6:e21943

    PubMed  CAS  Google Scholar 

  • Cowie AL, Penman TD, Gorissen L, Winslow MD, Lehmann J, Tyrrell TD, Twomlow S, Wilkes A, Lal R, Jones JW, Paulsch A, Kellner K, Akhtar-Schuster M (2011) Towards sustainable land management in the drylands: scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degrad Dev 22SI:248–260

    Google Scholar 

  • Cox CB, Moore PD (2005) Patterns of biodiversity. In: Cox CB, Moore PD (eds) Biogeography, an ecological and evolutionary approach, 7th edn. Blackwell, Oxford, pp 45–71

    Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    PubMed  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2011) Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 14:1134–1142

    PubMed  Google Scholar 

  • Culman SW, Young-Mathews A, Hollander AD, Ferris H, Sanchez-Moreno S, O’Geen AT, Jackson LE (2010) Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landsc Ecol 25:1333–1348

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    PubMed  CAS  Google Scholar 

  • Davis ALV, Scholtz CH (2001) Historical vs. ecological factors influencing global pattens of scarabaeine dung beetle diversity. Div Distrib 7:161–174

    Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    PubMed  Google Scholar 

  • De Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    PubMed  Google Scholar 

  • De Deyn GB, Quirk H, Yi Z, Oakley S, Ostle NJ, Bardgett RD (2009) Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. J Ecol 97:864–875

    Google Scholar 

  • De Deyn GB, Shiel RS, Ostle NJ, McNamara NP, Oakley S, Young I, Freeman C, Fenner N, Quirk H, Bardgett RD (2011) Additional carbon sequestration benefits of grassland diversity restoration. J Appl Ecol 48:600–608

    Google Scholar 

  • de Vries FT, Liiri EM, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–280

    Google Scholar 

  • Decaëns T (2010) Macroecological patterns in soil communities. Glob Ecol Biogeogr 19:287–302

    Google Scholar 

  • Dickie IA, Fukami T, Wilkie JP, Allen RB, Buchanan PK (2012) Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol Lett 15:133–141

    PubMed  Google Scholar 

  • Eswaran H, Reich PF, Kimble JM (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, pp 15–25

    Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    PubMed  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    PubMed  CAS  Google Scholar 

  • Fierer N, Lennon JT (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98:439–448

    PubMed  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007a) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066

    PubMed  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007b) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    PubMed  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    PubMed  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    PubMed  CAS  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    CAS  Google Scholar 

  • Fukami T, Dickie IA, Wilkie JP, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684

    PubMed  Google Scholar 

  • Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    CAS  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for soil suppressiveness. Annu Rev Phytopathol 42:243–270

    PubMed  CAS  Google Scholar 

  • Gaston KJ (1991) The magnitude of global insect species richness. Conserv Biol 5:283–296

    Google Scholar 

  • Glover JD, Culman SW, DuPont ST, Broussard W, Young L, Mangan ME, Mai JG, Crews TE, DeHaan LR, Buckley DH, Ferris H, Turner RE, Reynolds HL, Wyse DL (2010) Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric Ecosyst Environ 137:3–12

    Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sorensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722

    CAS  Google Scholar 

  • Groombridge B, Jenkins MD (2002) World atlas of biodiversity: earths living resources in the 21st century. University of California Press, Berkeley

    Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    PubMed  CAS  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25

    Google Scholar 

  • Holtkamp R, van der Wal A, Kardol P, van der Putten WH, de Ruiter PC, Dekker SC (2011) Modelling C and N mineralisation in soil food webs during secondary succession on ex-arable land. Soil Biol Biochem 43:251–260

    CAS  Google Scholar 

  • Hopkin SP (1998) Collembola: the most abundant insects on earth. Antenna 22:117–121

    Google Scholar 

  • Hunt HW, Wall DH (2002) Modelling the effects of loss of soil biodiversity on ecosystem function. Glob Change Biol 8:33–50

    Google Scholar 

  • Hunt HW, Ingham ER, Coleman DC, Elliott ET, Reid CPP (1988) Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69:1009–1016

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Römbke J, van der Putten WH (2010) Threats to soil biodiversity. In: European atlas of soil biodiversity. European Commission, Publications Office of the European Union, Luxembourg, pp 52–65

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Jouquet P, Dauber J, Lagerlof J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164

    Google Scholar 

  • Jouquet P, Traore S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222

    Google Scholar 

  • Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T et al (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, Dordrecht, pp 1–25

    Google Scholar 

  • Kardol P, Wardle DA (2010) How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol Evol 25:670–679

    PubMed  Google Scholar 

  • Killham K (1994) The soil biota. In: Killham K (ed) Soil ecology. Cambridge University Press, Cambridge, p 42

    Google Scholar 

  • King AW, Post WM, Wullschleger SD (1997) The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Clim Change 35:199–227

    CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Change Biol 16:3386–3406

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    PubMed  CAS  Google Scholar 

  • Lal R, Follet RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956

    CAS  Google Scholar 

  • Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170:23–33

    CAS  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lavelle P, Barros E, Blanchart E, Brown G, Desjardins T, Mariani L, Rossi JP (2001) SOM management in the tropics: why feeding the soil macrofauna? Nutr Cycl Agroecosyst 61:53–61

    Google Scholar 

  • Lavelle P, Decaens T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Boddy L, Read DJ (2005) Is diversity of mycorrhizal fungi important for ecosystem functioning? In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 216–235

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:24–31

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Google Scholar 

  • Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci 62:105–116

    CAS  Google Scholar 

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88:1611–1621

    PubMed  Google Scholar 

  • Ostle NJ, Smith P, Fisher R, Woodward FI, Fisher JB, Smith JU, Galbraith D, Levy P, Meir P, McNamara NP, Bardgett RD (2009) Integrating plant-soil interactions into global carbon cycle models. J Ecol 97:851–863

    CAS  Google Scholar 

  • Panzieri M, Marchettini N, Hallam TG (2000) Importance of the Bradhyrizobium japonicum symbiosis for the sustainability of a soybean cultivation. Ecol Model 135:301–310

    Google Scholar 

  • Peltzer DA, Allen RB, Lovett GM, Whitehead D, Wardle DA (2009) Effects of biological invasions on forest carbon sequestration. Glob Change Biol 16:732–746

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative-analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287–388

    Google Scholar 

  • Pulleman MM, Six J, Uyl A, Marinissen JCY, Jongmans AG (2005) Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Appl Soil Ecol 29:1–15

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    PubMed  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    PubMed  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    PubMed  CAS  Google Scholar 

  • Schnoor TK, Martensson LM, Olsson PA (2011) Soil disturbance alters plant community composition and decreases mycorrhizal carbon allocation in a sandy grassland. Oecologia 167:809–819

    PubMed  Google Scholar 

  • Schulze ED (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147–166

    CAS  Google Scholar 

  • Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    PubMed  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Sci 363:789–813

    CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Bot Gardens, Kew

    Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451

    PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tate RL (1987) Soil organic matter: biological and ecological effects. Wiley, New York

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 62:141–163

    Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296:1064–1066

    PubMed  CAS  Google Scholar 

  • Turbé A, De Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment). http://ec.europa.eu/environment/soil/pdf/biodiversity_report.pdf

  • van der Heijden MAG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Google Scholar 

  • Walter DE, Procter HC (1999) Mites: ecology, evolution and behaviour. CABI Publishing, Wallingford

    Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Callaway RM, van der Putten WH (2011) Terrestrial ecosystem responses to species gains and losses. Science 332:1273–1277

    PubMed  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    PubMed  CAS  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Le Roux X (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169

    PubMed  CAS  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Sci Rev 97:257–272

    Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    PubMed  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    PubMed  CAS  Google Scholar 

  • Woodward FI, Lomas MR, Kelly CK (2004) Global climate and the distribution of plant biomes. Proc R Soc Lond B Biol Sci 359:1465–1476

    CAS  Google Scholar 

  • Wu TH, Ayres E, Bardgett RD, Wall DH, Garey JR (2011) Molecular study of worldwide distribution and diversity of soil animals. Proc Natl Acad Sci U S A 108:17720–17725

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements 

GBDD acknowledges the EU for support by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlinde B. De Deyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Deyn, G.B. (2013). Ecosystem Carbon and Soil Biodiversity. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_7

Download citation

Publish with us

Policies and ethics