Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 29))

Abstract

In this paper, CFD calculations for current loads on an LNG carrier and a semi-submersible are presented, both for model and full-scale situations, for current angles ranging from 180 to 0 degrees. MARIN’s in-house URANS code ReFRESCO is used. Numerical studies are carried out concerning iterative convergence and grid refinement. In total, more than 100 calculations have been performed. Detailed verification analysis is carried out using modern techniques, and numerical uncertainties are calculated. Afterwards, quantitative validation for model-scale Reynolds number is done taking into account numerical and experimental uncertainties. Scale effects on the current coefficients are investigated, having in mind the estimated numerical uncertainties, and unsteady effects are briefly studied. Good iterative convergence is obtained in most calculations, i.e. a decrease in residuals of more than 5 orders is achieved. The sensitivity to grid resolution has been investigated for both model and full scale using five consecutively refined grids and for 3 current headings. The differences in the solution between two consecutive refinements converge for all cases. The numerical uncertainties are larger for angles with small values of the loads. Comparison with experiments shows that ReFRESCO provides good quantitative prediction of the current loads at model scale: for angles with larger forces the CFD results are validated with 15 % of uncertainty. To determine scale effects the numerical uncertainties must be considered in order to prevent wrong conclusions drawn on basis of numerical differences rather than on physical differences. For the full-scale results larger numerical uncertainties are found than for model scale and for absolute values for scale effects this uncertainty should be improved. For the LNG carrier significant scale effects, i.e. more than 40 %, have been obtained for current angles where the friction component is dominant. For these cases the numerical uncertainty is relatively low. For the other current angles differences of 8–30 % between model and full scale can be observed, but here larger numerical uncertainties are found. For the semi-submersible the numerical uncertainties for the full-scale results are larger than for the LNG carrier. For the semi-submersible the pressure component of the force is highly dominant, i.e. larger than 90 % of the total force. On average the full-scale current coefficients are 20 % lower than at model scale, but larger differences for a number of angles can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaz G, Waals O, Fathi F, Ottens H, Le Souef T, Kwong K (2009) Current affairs—model tests, semi-empirical predictions and CFD computations for current coefficients of semi-submersibles. In: Proceedings of OMAE2009, Honolulu, Hawaii, USA

    Google Scholar 

  2. Eça L, Vaz G, Hoekstra M (2010) A verification and validation exercise for the flow over a backward facing step. In: Proceedings of ECCOMAS-CFD2010, Lisbon, Portugal

    Google Scholar 

  3. Vaz G, Jaouen F, Hoekstra M (2009) Free-surface viscous flow computations. Validation of URANS code FreSCo. In: Proceedings of OMAE2009, Honolulu, Hawaii, USA

    Google Scholar 

  4. Fathi F, Klaij CM, Koop A (2010) Predicting loads on a LNG carrier with CFD. In: Proceedings of OMAE2010, Shanghai, China

    Google Scholar 

  5. Koop A, Bereznitski A (2011) Model-scale and full-scale CFD calculations for current loads on semi-submersible. In: Proceedings of OMAE2011, Rotterdam, The Netherlands

    Google Scholar 

  6. Oil Companies International Marine Forum (1994) Prediction of wind and current loads on VLCCs, 2nd edn

    Google Scholar 

  7. Waals OJ (2007) Current force measurements on a 135,000 m3 and 224,000 m3 LNG carrier—HAWAII JIP current coefficients. Technical report 19436-1-BT, MARIN

    Google Scholar 

  8. http://www.force.dk

  9. http://www.gridpro.com/

  10. Koop A, Klaij CM, Vaz G (2010) Predicting wind shielding for FPSO tandem offloading using CFD. In: Proceedings of OMAE2010, Shanghai, China

    Google Scholar 

  11. Vaz G, Toxopeus SL, Holmes S (2010) Calculation of manoeuvring forces on submarines using two viscous-flow solvers. In: Proceedings of OMAE2010, Shanghai, China

    Google Scholar 

  12. Menter F (1994) Two-equation eddy viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  13. American Institute for Aeronautics and Astronautics (1998) Guide for verification and validation of computational fluid dynamics simulations. Technical report AIAA-G-077-1998, AIAA

    Google Scholar 

  14. American Society of Mechanical Engineers (2008) ASME guide on verification and validation in computational fluid dynamics and heat transfer. Technical report ASME Committee PTC-61, ANSI standard V&V-20

    Google Scholar 

  15. Rijpkema D, Vaz G (2011) Viscous flow computations on propulsors: verification, validation and scale effects. In: Proceedings of RINA-CFD2011, London, UK

    Google Scholar 

  16. Toxopeus SL (2011) Practical application of viscous-flow calculations for the simulation of manoeuvring ships. PhD thesis, Delft University of Technology, Faculty Mechanical, Maritime and Materials Engineering

    Google Scholar 

  17. Raven HC, van der Ploeg A, Starke AR, Eça L (2008) Towards a CFD-based prediction of ship performance. Progress in predicting full-scale resistance and scale effects. In: Proceedings of RINA-CFD-2008, London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Koop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koop, A.H., Klaij, C.M., Vaz, G. (2013). Viscous-Flow Calculations for Model and Full-Scale Current Loads on Typical Offshore Structures. In: Eça, L., Oñate, E., García-Espinosa, J., Kvamsdal, T., Bergan, P. (eds) MARINE 2011, IV International Conference on Computational Methods in Marine Engineering. Computational Methods in Applied Sciences, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6143-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6143-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6142-1

  • Online ISBN: 978-94-007-6143-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics