Skip to main content
Book cover

Tetraspanins pp 169–186Cite as

Genetic Evidence for Tetraspanin Functions

  • Chapter
  • First Online:

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

Tetraspanin proteins have been suggested to associate with many different cell surface partner proteins, and in vitro studies have suggested involvement in a wide variety of cellular functions. However, knockout phenotypes in mice have so far been relatively mild, and there have been few clear examples of human tetraspanin mutations having functional consequences. Nonetheless a range of sometimes subtle, but interesting phenotypes are emerging from studies of mouse knockouts, and from analysis of human mutations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abidi FE, Holinski-Feder E, Rittinger O, Kooy F, Lubs HA, Stevenson RE, Schwartz CE (2002) A novel 2 bp deletion in the TM4SF2 gene is associated with MRX58. J Med Genet 39:430–433

    PubMed  CAS  Google Scholar 

  • Ardman B, Sikorski MA, Staunton DE (1992) CD43 interferes with T-lymphocyte adhesion. Proc Natl Acad Sci USA 89:5001–5005

    PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Kolira M, Dreyer JL (2005) In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255

    PubMed  CAS  Google Scholar 

  • Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S (2008) Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol 173:927–937

    PubMed  CAS  Google Scholar 

  • Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microsc Res Tech 51:280–301

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001) Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 276:41165–41174

    PubMed  CAS  Google Scholar 

  • Bertaux C, Dragic T (2006) Different domains of CD81 mediate distinct stages of hepatitis C virus pseudoparticle entry. J Virol 80:4940–4948

    PubMed  CAS  Google Scholar 

  • Birling MC, Tait S, Hardy RJ, Brophy PJ (1999) A novel rat tetraspan protein in cells of the oligodendrocyte lineage. J Neurochem 73:2600–2608

    PubMed  CAS  Google Scholar 

  • Champy MF, Le Voci L, Selloum M, Peterson LB, Cumiskey AM, Blom D (2010) Reduced body weight in male Tspan8-deficient mice. Int J Obes (Lond) 35:605–617

    Google Scholar 

  • Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337

    PubMed  CAS  Google Scholar 

  • Chen Z, Pasquini M, Hong B, DeHart S, Heikens M, Tsai S (2005) The human Penumbra gene is mapped to a region on chromosome 7 frequently deleted in myeloid malignancies. Cancer Genet Cytogenet 162:95–98

    PubMed  CAS  Google Scholar 

  • Cowin AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK (2006) Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol 126:680–689

    PubMed  CAS  Google Scholar 

  • Criswick VG, Schepens CL (1969) Familial exudative vitreoretinopathy. Am J Ophthalmol 68:578–594

    PubMed  CAS  Google Scholar 

  • Deng J, Yeung VP, Tsitoura D, DeKruyff RH, Umetsu DT, Levy S (2000) Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J Immunol 165:5054–5061

    PubMed  CAS  Google Scholar 

  • Deng J, DeKruyff RH, Freeman GJ, Umetsu DT, Levy S (2002) Critical role of CD81 in cognate T-B cell interactions leading to Th2 responses. Int Immunol 14:513–523

    PubMed  CAS  Google Scholar 

  • Dunn CD, Sulis ML, Ferrando AA, Greenwald I (2010) A conserved tetraspanin subfamily promotes Notch signaling in Caenorhabditis elegans and in human cells. Proc Natl Acad Sci USA 107:5907–5912

    PubMed  CAS  Google Scholar 

  • Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R (2003) The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J Biol Chem 278:51203–51212

    PubMed  CAS  Google Scholar 

  • Garcia-Frigola C, Burgaya F, de Lecea L, Soriano E (2001) Pattern of expression of the tetraspanin Tspan-5 during brain development in the mouse. Mech Dev 106:207–212

    PubMed  CAS  Google Scholar 

  • Gartlan KH, Belz GT, Tarrant JM, Minigo G, Katsara M, Sheng KC, Sofi M, van Spriel AB, Apostolopoulos V, Plebanski M, Robb L, Wright MD (2010) A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity. J Immunol 185:3158–3166

    PubMed  CAS  Google Scholar 

  • Geisert EE Jr, Williams RW, Geisert GR, Fan L, Asbury AM, Maecker HT, Deng J, Levy S (2002) Increased brain size and glial cell number in CD81-null mice. J Comp Neurol 453:22–32

    PubMed  Google Scholar 

  • Gellersen B, Briese J, Oberndorfer M, Redlin K, Samalecos A, Richter DU, Loning T, Schulte HM, Bamberger AM (2007) Expression of the metastasis suppressor KAI1 in decidual cells at the human maternal-fetal interface: regulation and functional implications. Am J Pathol 170:126–139

    PubMed  CAS  Google Scholar 

  • Glazar AI, Evans JP (2009) Immunoglobulin superfamily member IgSF8 (EWI-2) and CD9 in fertilisation: evidence of distinct functions for CD9 and a CD9-associated protein in mammalian sperm-egg interaction. Reprod Fertil Dev 21:293–303

    PubMed  CAS  Google Scholar 

  • Gomot M, Ronce N, Dessay S, Zemni R, Ayrault AD, Moizard MP, Nivelon A, Gilgenkrantz S, Dourlens J, des Portes V, Chelly J, Moraine C (2002) TM4SF2 gene involvement reconsidered in an XLMR family after neuropsychological assessment. Am J Med Genet 112:400–404

    PubMed  Google Scholar 

  • Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, Hickey MJ, Wright MD, Jackson DE (2006) Impaired ‘outside-in’ integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood 108:1911–1918

    PubMed  CAS  Google Scholar 

  • Grarup N, Andersen G, Krarup NT, Albrechtsen A, Schmitz O, Jorgensen T, Borch-Johnsen K, Hansen T, Pedersen O (2008) Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-­aged Danes. Diabetes 57:2534–2540

    PubMed  CAS  Google Scholar 

  • Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, Fagarasan S (2006) Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 203:2541–2550

    PubMed  CAS  Google Scholar 

  • Heikens MJ, Cao TM, Morita C, Dehart SL, Tsai S (2007) Penumbra encodes a novel tetraspanin that is highly expressed in erythroid progenitors and promotes effective erythropoiesis. Blood 109:3244–3252

    PubMed  CAS  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins—potential benefits and strategies. Nat Rev Drug Discov 7:747–758

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Ding L, Ikenaka K, Inoue Y, Miyado K, Mekada E, Baba H (2004) Tetraspanin protein CD9 is a novel paranodal component regulating paranodaljunctional formation. J Neurosci 24:96–102

    PubMed  CAS  Google Scholar 

  • Israels SJ, McMillan-Ward EM (2005) CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb Haemost 93:311–318

    PubMed  CAS  Google Scholar 

  • Iwai K, Ishii M, Ohshima S, Miyatake K, Saeki Y (2007) Expression and function of transmembrane-­4 superfamily (tetraspanin) proteins in osteoclasts: reciprocal roles of Tspan-5 and NET-6 during osteoclastogenesis. Allergol Int 56:457–463

    PubMed  CAS  Google Scholar 

  • Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-­binding EGF-like growth factor, which acts as a diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which upregulates functional receptors and diphtheria toxin sensitivity. EMBO J 13:2322–2330

    PubMed  CAS  Google Scholar 

  • Juenger H, Holst MI, Duffe K, Jankowski J, Baader SL (2005) Tetraspanin-5 (Tm4sf9) mRNA expression parallels neuronal maturation in the cerebellum of normal and L7En-2 transgenic mice. J Comp Neurol 483:318–328

    PubMed  CAS  Google Scholar 

  • Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, Costa M, Rice DS, Ye W (2009) TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311

    PubMed  CAS  Google Scholar 

  • Kagan A, Feld S, Chemke J, Bar-Khayim Y (1988) Occurrence of hereditary nephritis, pretibialepidermolysisbullosa and beta-thalassemia minor in two siblings with end-stage renal disease. Nephron 49:331–332

    PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282

    PubMed  CAS  Google Scholar 

  • Karamatic CV, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady LR, Daniels G, Anstee DJ (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223

    Google Scholar 

  • Kashtan CE (2000) Alport syndromes: phenotypic heterogeneity of progressive hereditary nephritis. Pediatr Nephrol 14:502–512

    PubMed  CAS  Google Scholar 

  • Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME (2002) An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell Biol 158:1299–1309

    PubMed  CAS  Google Scholar 

  • Kelic S, Levy S, Suarez C, Weinstein DE (2001) CD81 regulates neuron-induced astrocyte cell-­cycle exit. Mol Cell Neurosci 17:551–560

    PubMed  CAS  Google Scholar 

  • Kim TR, Yoon JH, Kim YC, Yook YH, Kim IG, Kim YS, Lee H, Paik SG (2004) LPS-induced CD53 expression: a protection mechanism against oxidative and radiation stress. Mol Cells 17:125–131

    PubMed  CAS  Google Scholar 

  • Knobeloch KP, Wright MD, Ochsenbein AF, Liesenfeld O, Lohler J, Zinkernagel RM, Horak I, Orinska Z (2000) Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol Cell Biol 20:5363–5369

    PubMed  CAS  Google Scholar 

  • Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11

    PubMed  Google Scholar 

  • Koyama Y, Yamanoha B, Yoshida T (1990) A novel monoclonal antibody induces the differentiation of monocyte leukemic cells. Biochem Biophys Res Commun 168:898–904

    PubMed  CAS  Google Scholar 

  • Lagaudriere-Gesbert C, Lebel-Binay S, Hubeau C, Fradelizi D, Conjeaud H (1998) Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur J Immunol 28:4332–4344

    PubMed  CAS  Google Scholar 

  • Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME (2003) Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci USA 100:7616–7621

    PubMed  CAS  Google Scholar 

  • Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, Jackson DE (2004) The tetraspanin superfamily member, CD151 regulates outside-in integrin {alpha}IIb{beta}3 signalling and platelet function. Blood 104:2368–2375

    PubMed  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    PubMed  Google Scholar 

  • Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194

    PubMed  CAS  Google Scholar 

  • Maecker HT, Levy S (1997) Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 185:1505–1510

    PubMed  CAS  Google Scholar 

  • Maecker HT, Do MS, Levy S (1998) CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses. Proc Natl Acad Sci USA 95:2458–2462

    PubMed  CAS  Google Scholar 

  • Maranduba CM, Sa ME, Muller OG, Pavanello RC, Vianna-Morgante AM, Passos-Bueno MR (2004) Does the P172H mutation at the TM4SF2 gene cause X-linked mental retardation? Am J Med Genet A 124A:413–415

    PubMed  Google Scholar 

  • Mela A, Goldman JE (2009) The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination. J Neurosci 29:11172–11181

    PubMed  CAS  Google Scholar 

  • Meyer-Wentrup F, Figdor CG, Ansems M, Brossart P, Wright MD, Adema GJ, van Spriel AB (2007) Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J Immunol 178:154–162

    PubMed  CAS  Google Scholar 

  • Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173:975–983

    PubMed  CAS  Google Scholar 

  • Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Muller U, Campbell KS (1997) Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 16:4217–4225

    PubMed  CAS  Google Scholar 

  • Mollinedo F, Fontan G, Barasoain I, Lazo PA (1997) Recurrent infectious diseases in human CD53 deficiency. Clin Diagn Lab Immunol 4:229–231

    PubMed  CAS  Google Scholar 

  • Nicholson RH, Pantano S, Eliason JF, Galy A, Weiler S, Kaplan J, Hughes MR, Ko MS (2000) Phemx, a novel mouse gene expressed in hematopoietic cells maps to the imprinted cluster on distal chromosome 7. Genomics 68:13–21

    PubMed  CAS  Google Scholar 

  • Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EA, Arts P, Wieskamp N, Strom TM, Ayuso C, Tilanus MA, Bouwhuis S, Mukhopadhyay A, Scheffer H, Hoefsloot LH, Veltman JA, Cremers FP, Collin RW (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247

    PubMed  CAS  Google Scholar 

  • Noor A, Gianakopoulos PJ, Fernandez B, Marshall CR, Szatmari P, Roberts W, Scherer SW, Vincent JB (2009) Copy number variation analysis and sequencing of the X-linked mental retardation gene TSPAN7/TM4SF2 in patients with autism spectrum disorder. Psychiatr Genet 19:154–155

    PubMed  Google Scholar 

  • Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, Ashman LK, Jackson DE (2009) A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J Thromb Haemost 7:2074–2084

    PubMed  CAS  Google Scholar 

  • Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, Knapp W (2004) CD63 as an activation-linked T cell costimulatory element. J Immunol 173:6000–6008

    PubMed  CAS  Google Scholar 

  • Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Henrion E, Laurent S, Noreau A, Thibodeau P, Karemera L, Spiegelman D, Kuku F, Duguay J, Destroismaisons L, Jolivet P, Cote M, Lachapelle K, Diallo O, Raymond A, Marineau C, Champagne N, Xiong L, Gaspar C, Riviere JB, Tarabeux J, Cossette P, Krebs MO, Rapoport JL, Addington A, Delisi LE, Mottron L, Joober R, Fombonne E, Drapeau P, Rouleau GA (2010) Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 16:867–880

    PubMed  Google Scholar 

  • Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592

    PubMed  CAS  Google Scholar 

  • Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, Mackey DA, Kearns LS, Ruddle JB, Craig JE, Pierce EA, Downey LM, Mohamed MD, Markham AF, Inglehearn CF, Toomes C (2010) Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 86:248–253

    PubMed  CAS  Google Scholar 

  • Protty MB, Watkins NA, Colombo D, Thomas SG, Heath VL, Herbert JM, Bicknell R, Senis YA, Ashman LK, Berditchevski F, Ouwehand WH, Watson SP, Tomlinson MG (2009) Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochem J 417:391–400

    PubMed  CAS  Google Scholar 

  • Robb L, Tarrant J, Groom J, Ibrahim M, Li R, Borobakas B, Wright MD (2001) Molecular characterisation of mouse and human TSSC6: evidence that TSSC6 is a genuine member of the tetraspanin superfamily and is expressed specifically in haematopoietic organs. Biochim Biophys Acta 1522:31–41

    PubMed  CAS  Google Scholar 

  • Rocha-Perugini V, Montpellier C, Delgrange D, Wychowski C, Helle F, Pillez A, Drobecq H, Le Naour F, Charrin S, Levy S, Rubinstein E, Dubuisson J, Cocquerel L (2008) The CD81 partner EWI-2wint inhibits hepatitis C virus entry. PLoS One 3:e1866

    PubMed  Google Scholar 

  • Rops AL, Figdor CG, van der Schaaf A, Tamboer WP, Bakker MA, Berden JH, Dijkman HB, Steenbergen EJ, van der Vlag J, van der Spriel AB (2010) The tetraspanin CD37 protects against glomerular IgA deposition and renal pathology. Am J Pathol 176:2188–2197

    PubMed  CAS  Google Scholar 

  • Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F, Boucheix C (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358

    PubMed  CAS  Google Scholar 

  • Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317–325

    PubMed  CAS  Google Scholar 

  • Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, Sonnenberg A (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175:33–39

    PubMed  CAS  Google Scholar 

  • Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordek R, Potemski P, Eliopoulos AG, Lalani e-N, Berditchevski F (2009) CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 7:787–798

    PubMed  CAS  Google Scholar 

  • Scholz CJ, Jacob CP, Buttenschon HN, Kittel-Schneider S, Boreatti-Hummer A, Zimmer M, Walter U, Lesch KP, Mors O, Kneitz S, Deckert J, Reif A (2010) Functional variants of TSPAN8 are associated with bipolar disorder and schizophrenia. Am J Med Genet BNeuropsychiatr Genet 153B:967–972

    CAS  Google Scholar 

  • Schroder J, Lullmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, Koch-Nolte F, Schroder B, Bleich M, Saftig P (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29:1083–1094

    PubMed  Google Scholar 

  • Shastry BS (2010) Genetic susceptibility to advanced retinopathy of prematurity (ROP). J Biomed Sci 17:69

    PubMed  Google Scholar 

  • Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L, Wright MD (2009) Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell ­co-­stimulation by DC. Eur J Immunol 39:50–55

    PubMed  CAS  Google Scholar 

  • Silvie O, Greco C, Franetich JF, Dubart-Kupperschmitt A, Hannoun L, van Gemert GJ, Sauerwein RW, Levy S, Boucheix C, Rubinstein E, Mazier D (2006) Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cell Microbiol 8:1134–1146

    PubMed  CAS  Google Scholar 

  • Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844

    PubMed  CAS  Google Scholar 

  • Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-­genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    PubMed  CAS  Google Scholar 

  • Stipp CS, Orlicky D, Hemler ME (2001a) FPRP: a major, highly stoichiometric, highly specific CD81 and CD9-associated protein. J Biol Chem 276:4853–4862

    PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2001b) EWI-2 is a major CD9 and CD81 partner, and member of a novel Ig protein subfamily. J Biol Chem 276:40545–40554

    PubMed  CAS  Google Scholar 

  • Tachibana I, Bodorova J, Berditchevski F, Zutter MM, Hemler ME (1997) NAG-2, a novel transmembrane-­4 superfamily (TM4SF) protein that complexes with integrins and other TM4SF proteins. J Biol Chem 272:29181–29189

    PubMed  CAS  Google Scholar 

  • Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, Kimura H, Yamane H, Saito Y, Goto H, Yoneda T, Yoshida M, Kumagai T, Osaki T, Hayashi S, Kawase I, Mekada E (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161:945–956

    PubMed  CAS  Google Scholar 

  • Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME (2007) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532

    PubMed  CAS  Google Scholar 

  • Tarrant JM, Groom J, Metcalf D, Li R, Borobokas B, Wright MD, Tarlinton D, Robb L (2002) The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol Cell Biol 22:5006–5018

    PubMed  CAS  Google Scholar 

  • Terada N, Baracskay K, Kinter M, Melrose S, Brophy PJ, Boucheix C, Bjartmar C, Kidd G, Trapp BD (2002) The tetraspanin protein, CD9, is expressed by progenitor cells committed to oligodendrogenesis and is linked to beta1 integrin, CD81, and Tspan-2. Glia 40:350–359

    PubMed  Google Scholar 

  • Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM (2001) OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 153:295–305

    PubMed  CAS  Google Scholar 

  • Tiwari-Woodruff SK, Kaplan R, Kornblum HI, Bronstein JM (2004) Developmental expression of OAP-1/Tspan-3, a member of the tetraspanin superfamily. J Neurosci Res 77:166–173

    PubMed  CAS  Google Scholar 

  • Tokoro Y, Shibuya K, Osawa M, Tahara-Hanaoka S, Iwama A, Kitamura T, Nakauchi H, Shibuya A (2001) Molecular cloning and characterization of mouse Tspan-3, a novel member of the tetraspanin superfamily, expressed on resting dendritic cells. Biochem Biophys Res Commun 288:178–183

    PubMed  CAS  Google Scholar 

  • Toomes C, Bottomley HM, Scott S, Mackey DA, Craig JE, Appukuttan B, Stout JT, Flaxel CJ, Zhang K, Black GC, Fryer A, Downey LM, Inglehearn CF (2004) Spectrum and frequency of FZD4 mutations in familial exudativevitreoretinopathy. Invest Ophthalmol Vis Sci 45:2083–2090

    PubMed  Google Scholar 

  • Toothill VJ, van Mourik JA, Nieuwenhuis HK, Metzelaar MJ, Pearson JD (1990) Characterization of the enhanced adhesion of neutrophil leukocytes to thrombin-stimulated endothelial cells. J Immunol 145:283–291

    PubMed  CAS  Google Scholar 

  • Traggiai E, Lunardi C, Bason C, Dolcino M, Tinazzi E, Corrocher R, Puccetti A (2010) Generation of anti-NAG-2 mAb from patients’ memory B cells: implications for a novel therapeutic strategy in systemic sclerosis. Int Immunol 22:367–374

    PubMed  CAS  Google Scholar 

  • Tsitsikov EN, Gutierrez-Ramos JC, Geha RS (1997) Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA 94:10844–10849

    PubMed  CAS  Google Scholar 

  • Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I (2007) The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA 104:234–239

    PubMed  CAS  Google Scholar 

  • van Spriel AB, Sofi M, Gartlan KH, van der Schaaf A, Verschueren I, Torensma R, Raymakers RA, Loveland BE, Netea MG, Adema GJ, Wright MD, Figdor CG (2009) The tetraspanin protein CD37 regulates IgA responses and anti-fungal immunity. PLoS Pathog 5:e1000338

    PubMed  Google Scholar 

  • van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H, Orinska Z, Knobeloch KP, Plebanski M, Wright MD (2004) A regulatory role for CD37 in T cell proliferation. J Immunol 172:2953–2961

    CAS  Google Scholar 

  • von Lindern JJ, Rojo D, Grovit-Ferbas K, Yeramian C, Deng C, Herbein G, Ferguson MR, Pappas TC, Decker JM, Singh A, Collman RG, O’Brien WA (2003) Potential role for CD63 in CCR5-­mediated human immunodeficiency virus type 1 infection of macrophages. J Virol 77:3624–3633

    Google Scholar 

  • Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in {alpha}3{beta}1 and {alpha}6{beta}4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721

    PubMed  CAS  Google Scholar 

  • Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988

    PubMed  CAS  Google Scholar 

  • Xu D, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 23:3674–3681

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Grubisic K, Oelgeschlager M (2007) Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo. Differentiation 75:235–245

    PubMed  CAS  Google Scholar 

  • Yánez-Mó M, Alfranca A, Cabañas C, Marazuela M, Tejedor R, Ursa MA, Ashman LK, De Landázuri MO, Sánchez-Madrid F (1998) Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with α3β1 integrin localized at endothelial lateral junctions. J Cell Biol 141:791–804

    PubMed  Google Scholar 

  • Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781

    PubMed  CAS  Google Scholar 

  • Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating α6 integrin functions, signaling, and molecular organization. Cancer Res 68:3204–3213

    PubMed  CAS  Google Scholar 

  • Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable and specific association of integrin α3β1 with CD151 provides a major link to phosphatidylinositol 4-kinase and may regulate cell migration. Mol Biol Cell 9:2751–2765

    PubMed  CAS  Google Scholar 

  • Ye X, Wang Y, Nathans J (2010) The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 16:417–425

    PubMed  CAS  Google Scholar 

  • Yunta M, Lazo PA (2003) Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene 22:1219–1224

    PubMed  CAS  Google Scholar 

  • Zeggini E, et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    PubMed  CAS  Google Scholar 

  • Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrie A, Billuart P, McDonell N, Couvert P, Francis F, Chafey P, Fauchereau F, Friocourt G, Portes V, Cardona A, Frints S, Meindl A, Brandau O, Ronce N, Moraine C, Bokhoven H, Ropers HH, Sudbrak R, Kahn A, Fryns JP, Beldjord C (2000) A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 24:167–170

    PubMed  CAS  Google Scholar 

  • Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stipp CS, Hemler ME (2002) Function of the tetraspanin CD151–a6b1 integrin complex during cellular morphogenesis. Mol Biol Cell 13:1–11

    PubMed  Google Scholar 

  • Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Hemler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hemler, M.E. (2013). Genetic Evidence for Tetraspanin Functions. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_7

Download citation

Publish with us

Policies and ethics