Skip to main content

Dynamic Partitioning of Tetraspanins Within Plasma Membranes

  • Chapter
  • First Online:
  • 938 Accesses

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

The study of the organization and dynamics of biological membranes has greatly benefited from the considerable technical advances achieved in the photonics field. Breaking the diffraction limit in optical microscopy to further increase spatial resolution has allowed to define the ultra-structure of the different proteolipid complexes within cellular membranes. Furthermore, the improvements in fluorescence sensitivity have prompted to the analysis of molecular dynamics up to single-molecule level with high temporal resolution. Thanks to all these advances, the concept of tetraspanin-enriched microdomains has been revisited in recent studies that shed new light on tetraspanin dynamics and interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Chl:

Cholesterol

FCCS:

Fluorescence Cross-Correlation Spectroscopy

FCS:

Fluorescence Correlation Spectroscopy

FRAP:

Fluorescent Recovery After Photobleaching

FRET-FLIM:

Fluorescence Resonance Energy Transfer-Fluorescence Lifetime Imaging Microscopy

PALM:

Photo-Activated Localization Microscopy

SMT:

Single Molecule Tracking

STED:

Stimulated Emission Depletion

STORM:

Stochastic Optical Reconstruction Microscopy

TEM:

Tetraspanin-Enriched Microdomain

References

  • Abitorabi MA, Pachynski RK, Ferrando RE, Tidswell M, Erle DJ (1997) Presentation of integrins on leukocyte microvilli: a role for the extracellular domain in determining membrane localization. J Cell Biol 139(2):563–571. doi:10.1083/jcb.139.2.563

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157(7):1233–1245. doi:10.1083/jcb.200112126

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105(7):2852–2861. doi:10.1182/blood-2004-09-3606

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, de la Fuente H, Mittelbrunn M, Sanchez-Madrid F (2007) Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions. Immunol Rev 218:147–164. doi:10.1111/j.1600-065X.2007.00529

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183(3):527–542. doi:10.1083/jcb.200805076

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, Aguilar RJ, Tejera E, Megias D, de Torres-Alba F, Evangelista A, Sanchez-Madrid F (2009) Specific targeting of human inflamed endothelium and in situ vascular tissue transfection by the use of ultrasound contrast agents. JACC Cardiovasc Imag 2(8):997–1005. doi:10.1016/j.jcmg.2009.04.012

    Article  Google Scholar 

  • Berditchevski F, Odintsova E (1999) Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. J Cell Biol 146(2):477–492. doi:10.1083/jcb.146.2.477

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8(2):89–96. doi:10.1111/j.1600-0854.2006.00515.x

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-­deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-­enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277(40):36991–37000

    Article  PubMed  CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  PubMed  CAS  Google Scholar 

  • Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224. doi:10.1074/jbc.R000005200

    Article  PubMed  CAS  Google Scholar 

  • Carman CV, Springer TA (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15(5):547–556. doi:S0955067403001121 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144. doi:S001457930202522X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E (2003a) Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 304(1):107–112. doi:S0006291X0300545X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Thiele C, Billard M, Gerlier D, Boucheix C, Rubinstein E (2003b) A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 33:2479–2489. doi:10.1002/eji.200323884

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420(2):133–154. doi:10.1042/BJ20082422

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Muller JD, Eid JS, Gratton E (2001) Two-photon fluorescence fluctuation spectroscopy. In: Valeur B, Brochon JC (eds) New trends in fluorescence spectroscopy. Springer, Berlin, pp 277–296

    Chapter  Google Scholar 

  • Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T (2010) Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 123(Pt 5):723–735. doi:10.1242/jcs.062497

    Article  PubMed  CAS  Google Scholar 

  • Das R, Cairo CW, Coombs D (2009) A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput Biol 5(11):e1000556. doi:10.1371/journal.pcbi.1000556

    Article  PubMed  Google Scholar 

  • Dehmelt L, Bastiaens PI (2010) Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol 11(6):440–452. doi:10.1038/nrm2903

    Article  PubMed  CAS  Google Scholar 

  • Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H (2004) Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 117(Pt 22):5269–5282. doi:10.1242/jcs.01380

    Article  PubMed  CAS  Google Scholar 

  • Digman MA, Gratton E (2009) Analysis of diffusion and binding in cells using the RICS approach. Microsc Res Tech 72(4):323–332. doi:10.1002/jemt.20655

    Article  PubMed  Google Scholar 

  • Drummer HE, Wilson KA, Poumbourios P (2005) Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2. Biochem Biophys Res Commun 328(1):251–257. doi:10.1016/j.bbrc.2004.12.160

    Article  PubMed  CAS  Google Scholar 

  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale ­dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162. doi:10.1038/nature07596

    Article  PubMed  CAS  Google Scholar 

  • Espenel C, Margeat E, Dosset P, Arduise C, Le Grimellec C, Royer CA, Boucheix C, Rubinstein E, Milhiet PE (2008) Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J Cell Biol 182(4):765–776. doi:10.1083/jcb.200803010

    Article  PubMed  CAS  Google Scholar 

  • Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R (2003) The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J Biol Chem 278(51):51203–51212. doi:10.1074/jbc.M303601200

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Saez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46(2):116–122. doi:10.1016/j.ymeth.2008.06.011

    Article  PubMed  CAS  Google Scholar 

  • Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20(4):177–186. doi:10.1016/j.tcb.2010.01.005

    Article  PubMed  CAS  Google Scholar 

  • Heilemann M, Van De Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M, 33 (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176, doi:10.1002/anie.v47:33

    Article  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422. doi:10.1146/annurev.cellbio.19.111301.153609

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811. doi:10.1038/nrm1736

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9(1):7–14. doi:10.1038/ncb0107-7

    Article  PubMed  CAS  Google Scholar 

  • Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet PE, Thali M (2010) HIV-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components. Traffic 11(11):1401–1414. doi:10.1111/j.1600-0854.2010.01111.x

    Article  PubMed  CAS  Google Scholar 

  • Kusumi A, Sako Y, Yamamoto N (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65(5):2021–2040. doi: 0006-3495/93/11/2021/20

    Google Scholar 

  • Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunes JA, Payrastre B, Marguet D, He HT (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538–547. doi:10.1038/nchembio.103

    Article  PubMed  CAS  Google Scholar 

  • Le Naour F, Andre M, Boucheix C, Rubinstein E (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6(24):6447–6454. doi:10.1002/pmic.200600282

    Article  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50. doi:10.1126/science.1174621

    Article  PubMed  CAS  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647. doi:10.1146/annurev.immunol.25.022106.141618

    Article  PubMed  CAS  Google Scholar 

  • Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Meth 5(2):155–157. doi:10.1038/nmeth.1176

    Article  CAS  Google Scholar 

  • Margeat E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S (2006) Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys J 90(4):1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25(15):3446–3457. doi:10.1038/sj.emboj.7601204

    Article  PubMed  CAS  Google Scholar 

  • Mayor S, Riezman H (2004) Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5(2):110–120. doi:10.1038/nrm1309

    Article  PubMed  CAS  Google Scholar 

  • Mittelbrunn M, Yanez-Mo M, Sancho D, Ursa A, Sanchez-Madrid F (2002) Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol 169(12):6691–6695

    PubMed  CAS  Google Scholar 

  • Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M (2006) Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 173(5):795–807. doi:10.1083/jcb.200508165

    Article  PubMed  CAS  Google Scholar 

  • Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F (2006) Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 400(2):315–325

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14(3):141–147. doi:10.1016/j.tcb.2004.02.001

    Article  PubMed  CAS  Google Scholar 

  • Patterson G (2009) Fluorescence microscopy below the diffraction limit. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2009.08.006

  • Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Meth 7(4):275–285. doi:10.1038/nmeth.1444

    Article  CAS  Google Scholar 

  • Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780(3):421–433

    Article  PubMed  CAS  Google Scholar 

  • Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91(5):1915–1924. doi:10.1529/biophysj.106.082297

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C (2006) The molecular players of sperm-­egg fusion in mammals. Semin Cell Dev Biol 17(2):254–263. doi:10.1016/j.semcdb.2006.02.012

    Article  PubMed  CAS  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3(10):793–796. doi:10.1038/nmeth929

    Article  CAS  Google Scholar 

  • Sahl SJ, Leutenegger M, Hilbert M, Hell SW, Eggeling C (2010) Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc Natl Acad Sci USA 107(15):6829–6834. doi:10.1073/pnas.0912894107

    Article  PubMed  CAS  Google Scholar 

  • Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, Yanez-Mo M (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281(28):19665–19675. doi:10.1074/jbc.M602116200

    Article  PubMed  CAS  Google Scholar 

  • Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399. doi:10.1146/annurev.biophys.26.1.373

    Article  PubMed  CAS  Google Scholar 

  • Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-­molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182. doi:10.1002/(SICI)1097-0320(19990701)36:3<176::AID-CYTO5>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  • Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Meth 5(8):687–694. doi:10.1038/nmeth.1233

    Article  Google Scholar 

  • Silvie O, Charrin S, Billard M, Franetich JF, Clark KL, van Gemert GJ, Sauerwein RW, Dautry F, Boucheix C, Mazier D, Rubinstein E (2006) Cholesterol contributes to the organization of tetraspanin-­enriched microdomains and to CD81-dependent infection by malaria sporozoites. J Cell Sci 119(Pt 10):1992–2002. doi:10.1242/jcs.02911

    Article  PubMed  CAS  Google Scholar 

  • Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 12:e3. doi:10.1017/S1462399409001355

    Article  PubMed  Google Scholar 

  • Suzuki KG, Fujiwara TK, Edidin M, Kusumi A (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742. doi:10.1083/jcb.200609175

    Article  PubMed  CAS  Google Scholar 

  • Thali M (2009) The roles of tetraspanins in HIV-1 replication. Curr Top Microbiol Immunol 339:85–102. doi:10.1007/978-3-642-02175-6_5

    Article  PubMed  CAS  Google Scholar 

  • Tham TN, Gouin E, Rubinstein E, Boucheix C, Cossart P, Pizarro-Cerda J (2010) Tetraspanin CD81 is required for Listeria monocytogenes invasion. Infect Immun 78(1):204–209. doi:10.1128/IAI.00661-09

    Article  PubMed  CAS  Google Scholar 

  • Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I (2007) The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA 104(1):234–239. doi:10.1073/pnas.0609665104

    Article  PubMed  CAS  Google Scholar 

  • VanCompernolle SE, Levy S, Todd SC (2001) Anti-CD81 activates LFA-1 on T cells and promotes T cell-B cell collaboration. Eur J Immunol 31(3):823–831. doi:10.1002/1521-4141(200103)31:3<823::AID-IMMU823>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89(6):4029–4042. doi:10.1529/biophysj.105.067959

    Article  PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, Megias D, Genis L, Sachs N, Sala-Valdes M, Alonso MA, Montoya MC, Sonnenberg A, Arroyo AG, Sanchez-Madrid F (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112(8):3217–3226. doi:10.1182/blood-2008-02-139394

    Article  PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446. doi:10.1016/j.tcb.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  • Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bomsel M, Wolf JP (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 119(Pt 3):416–424. doi:10.1242/jcs.02730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Moreno Zamai for participating in data acquisition and analysis of Fig. 4.1. This work was supported by the Spanish Ministry of Science and Innovation (SAF2008-06235); and MEICA from Genoma España Foundation, INSINET from Comunidad Autónoma de Madrid [FONCICYT-C002-2009-1ALA/127249], and RECAVA [RD06/0014-0030] from Instituto de Salud Carlos III to F.S-M. This work was also supported by the Association Nationale pour la Recherche (ANR-06-BLAN-0378) to P.E.M. O.B. is a post-­doctoral fellow from Spanish Ministry of Science and Innovation ‘Juan de la Cierva Program’(JDC 08). Centro Nacional de Investigaciones Cardiovasculares is supported by the Ministry of Science and Innovation and the Pro CNIC Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olga Barreiro or Pierre-Emmanuel Milhiet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barreiro, O., Sanchez-Madrid, F., Espenel, C., Milhiet, PE. (2013). Dynamic Partitioning of Tetraspanins Within Plasma Membranes. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_4

Download citation

Publish with us

Policies and ethics