Skip to main content
Book cover

Tetraspanins pp 321–343Cite as

Essential Tetraspanin Functions in the Vertebrate Retina

  • Chapter
  • First Online:

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

This chapter summarizes current knowledge and reviews recent findings regarding the structure, function and importance of tetraspanins in the vertebrate neural retina. Since inherited defects in several human tetraspanins, including tetraspanin12 and peripherin-2/rds, are well documented to cause sight-robbing ocular diseases, these molecules are of significant interest from both basic science and clinical perspectives. In the retina, as is the case more generally, tetraspanin superfamily members serve diverse biological functions, but have in common the capacity to organize lateral interactions within cellular membranes. Proteins characterized to date can also display several distinctive properties, including: a high degree of cell-type specificity, a reduced tendency to participate in interaction webs, and an inability to compensate for one another functionally. Moreover, these features have facilitated the production of mouse models with robust and predictable phenotypes, and the biophysical/biochemical characterization of individual proteins. The resultant advances demonstrate essential roles for these molecules in building specialized membrane features and facilitating Wnt/β-catenin signaling for angiogenesis. Since tetraspanins are increasingly viewed as potential therapeutic targets, lessons learned from superfamily members with well-documented and essential functions in the retina may prove useful for understanding the roles tetraspanins play in disease more generally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarnisalo AA, Pietola L, Joensuu J, Isosomppi J, Aarnisalo P, Dinculescu A, Lewin AS, Flannery J, Hauswirth WW, Sankila EM, Jero J (2007) Anti-clarin-1 AAV-delivered ribozyme induced apoptosis in the mouse cochlea. Hear Res 230:9–16

    Article  PubMed  CAS  Google Scholar 

  • Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM, Fauser S, Reichel MB, Kinnon C, Hunt DM, Bhattacharya SS, Thrasher AJ (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310

    Article  PubMed  CAS  Google Scholar 

  • Ardell MD, Bedsole DL, Schoborg RV, Pittler SJ (2000) Genomic organization of the human rod photoreceptor cGMP-gated cation channel beta-subunit gene. Gene 245:311–318

    Article  PubMed  CAS  Google Scholar 

  • Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le NF (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181:7002–7013

    PubMed  CAS  Google Scholar 

  • Arikawa K, Molday LL, Molday RS, Williams DS (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 116:659–667

    Article  PubMed  CAS  Google Scholar 

  • Bascom RA, Manara S, Collins L, Molday RS, Kalnins VI, McInnes RR (1992) Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8:1171–1184

    Article  PubMed  CAS  Google Scholar 

  • Bascom RA, Schappert K, McInnes RR (1993) Cloning of the human and murine ROM1 genes: genomic organization and sequence conservation. Hum Mol Genet 2:385–391

    Article  PubMed  CAS  Google Scholar 

  • Batra-Safferling R, Abarca HK, Korschen HG, Tziatzios C, Stoldt M, Budyak I, Willbold D, Schwalbe H, Klein-Seetharaman J, Kaupp UB (2005) Glutamic acid-rich proteins of rod photoreceptors are natively unfolded. J Biol Chem 281:1449–1460

    Article  PubMed  CAS  Google Scholar 

  • Berger W, van de Pol D, Bachner D, Oerlemans F, Winkens H, Hameister H, Wieringa B, Hendriks W, Ropers HH (1996) An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet 5:51–59

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Goldberg AF (2002) Photoreceptor renewal: a role for peripherin/rds. Int Rev Cytol 217:183–225

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Kong F, Lamba OP, Stefano FP, Williams DS (1997) Purification and ­light-­dependent phosphorylation of a candidate fusion protein, the photoreceptor cell ­peripherin/rds. Biochemistry 36:6835–6846

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Lamba OP, Napoli AA Jr, Sinha S, Guo Y (1998) Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds. Biochemistry 37:9477–9487

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Dispoto J, Kahoe MA (2002) Association of a photoreceptor-specific tetraspanin protein, ROM-1, with triton X-100-resistant membrane rafts from rod outer segment disk membranes. J Biol Chem 277:41843–41849

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Song H, Sokolov M, Lillo C, Pankoski-Walker L, Gretzula C, Gallagher B, Rachel RA, Jenkins NA, Copeland NG, Morris F, Jacob J, Yeagle P, Williams DS, Damek-­Poprawa M (2007a) The tetraspanin protein peripherin-2 forms a complex with melanoregulin, a putative membrane fusion regulator. Biochemistry 46:1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia K, Stefano FP, Fitzgerald C, Muller-Weeks S (2007b) ROM-1 potentiates photoreceptor specific membrane fusion processes. Exp Eye Res 84:22–31

    Article  PubMed  CAS  Google Scholar 

  • Boon CJ, Den Hollander AI, Hoyng CB, Cremers FP, Klevering BJ, Keunen JE (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 27:213–235

    Article  PubMed  CAS  Google Scholar 

  • Bramall AN, Wright AF, Jacobson SG, McInnes RR (2010) The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 33:441–472

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Conley SM, Naash MI (2010a) Gene therapy in the retinal degeneration slow model of retinitis pigmentosa. Adv Exp Med Biol 664:611–619

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI (2010b) Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J 24:1178–1191

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty D, Ding XQ, Fliesler SJ, Naash MI (2008) Outer segment oligomerization of Rds: evidence from mouse models and subcellular fractionation. Biochemistry 47:1144–1156

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty D, Ding XQ, Conley SM, Fliesler SJ, Naash MI (2009) Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. Hum Mol Genet 18:797–808

    PubMed  CAS  Google Scholar 

  • Chakraborty D, Conley SM, Fliesler SJ, Naash MI (2010) The function of oligomerization-­incompetent RDS in rods. Retinal degenerative diseases: laboratory and therapeutic investigations. Adv Exp Med Biol 664:39–46

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Finnemann SC (2007) Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. J Cell Sci 120:3053–3063

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le NF, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Peachey NS, Li S, Goto Y, Cao Y, Naash MI (1997) The effect of peripherin/rds haploinsufficiency on rod and cone photoreceptors. J Neurosci 17:8118–8128

    PubMed  CAS  Google Scholar 

  • Clarke K, Geisert EE Jr (1998) The target of the antiproliferative antibody (TAPA) in the normal and injured rat retina. Mol Vis 4:3

    PubMed  CAS  Google Scholar 

  • Clarke G, Goldberg AF, Vidgen D, Collins L, Ploder L, Schwarz L, Molday LL, Rossant J, Szel A, Molday RS, Birch DG, McInnes RR (2000) Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 25:67–73

    Article  PubMed  CAS  Google Scholar 

  • Colville CA, Molday RS (1996) Primary structure and expression of the human beta-subunit and related proteins of the rod photoreceptor cGMP-gated channel. J Biol Chem 271:32968–32974

    Article  PubMed  CAS  Google Scholar 

  • Conley SM, Naash MI (2009) Focus on molecules: RDS. Exp Eye Res 89:278–279

    Article  PubMed  CAS  Google Scholar 

  • Conley S, Nour M, Fliesler SJ, Naash MI (2007) Late-onset cone photoreceptor degeneration induced by R172W mutation in Rds and partial rescue by gene supplementation. Invest Ophthalmol Vis Sci 48:5397–5407

    Article  PubMed  Google Scholar 

  • Conley SM, Stuck MW, Naash MI (2012) Structural and functional relationships between photoreceptor tetraspanins and other superfamily members. Cell Mol Life Sci 69:1035–1047

    Article  PubMed  CAS  Google Scholar 

  • Connell GJ, Molday RS (1990) Molecular cloning, primary structure, and orientation of the vertebrate photoreceptor cell protein peripherin in the rod outer segment disk membrane. Biochemistry 29:4691–4698

    Article  PubMed  CAS  Google Scholar 

  • Connell G, Bascom R, Molday L, Reid D, McInnes RR, Molday RS (1991) Photoreceptor ­peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proc Natl Acad Sci USA 88:723–726

    Article  PubMed  CAS  Google Scholar 

  • Corless JM, Fetter RD, Zampighi OB, Costello MJ, Wall-Buford DL (1987) Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: II. Organization of the terminal loop complex. J Comp Neurol 257:9–23

    Article  PubMed  CAS  Google Scholar 

  • Deissler H, Kuhn EM, Lang GE, Deissler H (2007) Tetraspanin CD9 is involved in the migration of retinal microvascular endothelial cells. Int J Mol Med 20:643–652

    PubMed  CAS  Google Scholar 

  • Ding XQ, Naash MI (2006) Transgenic animal studies of human retinal disease caused by mutations in peripherin/rds. Adv Exp Med Biol 572:141–146

    Article  PubMed  CAS  Google Scholar 

  • Ding XQ, Nour M, Ritter LM, Goldberg AF, Fliesler SJ, Naash MI (2004) The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Hum Mol Genet 13:2075–2087

    Article  PubMed  CAS  Google Scholar 

  • Ding XQ, Stricker HM, Naash MI (2005) Role of the second intradiscal loop of peripherin/rds in homo and hetero associations. Biochemistry 44:4897–4904

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE (1987) The retina: an approachable part of the brain. Harvard University Press, Cambridge

    Google Scholar 

  • Drin G, Antonny B (2010) Amphipathic helices and membrane curvature. FEBS Lett 584:1840–1847

    Article  PubMed  CAS  Google Scholar 

  • Dryja TP, Hahn LB, Kajiwara K, Berson EL (1997) Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 38:1972–1982

    PubMed  CAS  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  PubMed  CAS  Google Scholar 

  • Dunn CD, Sulis ML, Ferrando AA, Greenwald I (2010) A conserved tetraspanin subfamily promotes Notch signaling in Caenorhabditis elegans and in human cells. Proc Natl Acad Sci USA 107:5907–5912

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  • Edrington TC, Yeagle PL, Gretzula CL, Boesze-Battaglia K (2007) Calcium-dependent association of calmodulin with the C-terminal domain of the tetraspanin protein peripherin/rds. Biochemistry 46:3862–3871

    Article  PubMed  CAS  Google Scholar 

  • Farjo R, Naash MI (2006) The role of Rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet 27:117–122

    Article  PubMed  Google Scholar 

  • Farjo R, Skaggs JS, Nagel BA, Quiambao AB, Nash ZA, Fliesler SJ, Naash MI (2006) Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. J Cell Biol 173:59–68

    Article  PubMed  CAS  Google Scholar 

  • Fradkin LG, Kamphorst JT, DiAntonio A, Goodman CS, Noordermeer JN (2002) Genomewide analysis of the Drosophila tetraspanins reveals a subset with similar function in the formation of the embryonic synapse. Proc Natl Acad Sci USA 99:13663–13668

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R (2006) Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol 41:355–367

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91:326–334

    Article  PubMed  CAS  Google Scholar 

  • Geisert EE Jr, Abel HJ, Fan L, Geisert GR (2002) Retinal pigment epithelium of the rat express CD81, the target of the anti-proliferative antibody (TAPA). Invest Ophthalmol Vis Sci 43:274–280

    PubMed  Google Scholar 

  • Georgiadis A, Tschernutter M, Bainbridge JW, Robbie SJ, McIntosh J, Nathwani AC, Smith AJ, Ali RR (2010) AAV-mediated knockdown of peripherin-2 in vivo using miRNA-based hairpins. Gene Ther 17:486–493

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF (2006) Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol 253:131–175

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF, Molday RS (1996a) Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 35:6144–6149

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF, Molday RS (1996b) Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc Natl Acad Sci USA 93:13726–13730

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF, Moritz OL, Molday RS (1995) Heterologous expression of photoreceptor peripherin/rds and Rom-1 in COS-1 cells: assembly, interactions, and localization of multisubunit complexes. Biochemistry 34:14213–14219

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF, Loewen CJ, Molday RS (1998) Cysteine residues of photoreceptor peripherin/rds: role in subunit assembly and autosomal dominant retinitis pigmentosa. Biochemistry 37:680–685

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF, Fales LM, Hurley JB, Khattree N (2001) Folding and subunit assembly of photoreceptor peripherin/rds is mediated by determinants within the extracellular/intradiskal EC2 domain: implications for heterogeneous molecular pathologies. J Biol Chem 276:42700–42706

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF, Ritter LM, Khattree N, Peachey NS, Fariss RN, Dang L, Yu M, Bottrell AR (2007) An intramembrane glutamic acid governs peripherin/rds function for photoreceptor disk morphogenesis. Invest Ophthalmol Vis Sci 48:2975–2986

    Article  PubMed  Google Scholar 

  • Hawkins RK, Jansen HG, Sanyal S (1985) Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res 41:701–720

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151:961–972

    Article  PubMed  CAS  Google Scholar 

  • Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, Costa M, Rice DS, Ye W (2009) TSPAN12 regulates retinal vascular development by promoting Norrin—but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311

    Article  PubMed  CAS  Google Scholar 

  • Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT (1999) Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head int.raction, and hinge formation. J Mol Biol 285:595–608

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara K, Berson EL, Dryja TP (1994) Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264:1604–1608

    Article  PubMed  CAS  Google Scholar 

  • Kedzierski W, Moghrabi WN, Allen AC, Jablonski-Stiemke MM, Azarian SM, Bok D, Travis GH (1996) Three homologs of rds/peripherin in Xenopus laevis photoreceptors that exhibit covalent and non-covalent interactions. J Cell Sci 109(Pt 10):2551–2560

    PubMed  CAS  Google Scholar 

  • Kedzierski W, Nusinowitz S, Birch D, Clarke G, McInnes RR, Bok D, Travis GH (2001) Deficiency of rds/peripherin causes photoreceptor death in mouse models of digenic and dominant retinitis pigmentosa. Proc Natl Acad Sci USA 98:7718–7723

    Article  PubMed  CAS  Google Scholar 

  • Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Giddings I, Besch D, Apfelstedt-Sylla E, Zrenner E, Wissinger B (1998) The role of the peripherin/RDS gene in retinal dystrophies. Acta Anat (Basel) 162:75–84

    Article  CAS  Google Scholar 

  • Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Korschen HG, Illing M, Seifert R, Sesti F, Williams A, Gotzes S, Colville C, Muller F, Dose A, Godde M (1995) A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-­gated channel from rod photoreceptor. Neuron 15:627–636

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MA, Xu D, Hemler ME (2009) Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20:2030–2040

    Article  PubMed  CAS  Google Scholar 

  • Lee ES, Burnside B, Flannery JG (2006) Characterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals. Invest Ophthalmol Vis Sci 47:2150–2160

    Article  PubMed  Google Scholar 

  • Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    Article  CAS  Google Scholar 

  • Levy S, Todd SC, Maecker HT (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 16:89–109

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Molday RS (2000) Disulfide-mediated oligomerization of peripherin/Rds and Rom-1 in photoreceptor disk membranes. Implications for photoreceptor outer segment morphogenesis and degeneration. J Biol Chem 275:5370–5378

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Moritz OL, Molday RS (2001) Molecular characterization of peripherin-2 and rom-1 mutants responsible for digenic retinitis pigmentosa. J Biol Chem 276:22388–22396

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Moritz OL, Tam BM, Papermaster DS, Molday RS (2003) The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa. Mol Biol Cell 14:3400–3413

    Article  PubMed  CAS  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    PubMed  CAS  Google Scholar 

  • Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Molday RS (1994) Peripherin/Rds and Rom-1—molecular-properties and role in photoreceptor cell degeneration. Prog Retin Eye Res 13:271–299

    Article  CAS  Google Scholar 

  • Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    PubMed  CAS  Google Scholar 

  • Molday RS, Molday LL, Loewen CJ (2004) Role of subunit assembly in autosomal dominant retinitis pigmentosa linked to mutations in peripherin 2. Novartis Found Symp 255:95–112

    Article  PubMed  CAS  Google Scholar 

  • Moritz OL, Molday RS (1996) Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells. Invest Ophthalmol Vis Sci 37:352–362

    PubMed  CAS  Google Scholar 

  • Naash MI, Ding XQ, Li C, O’Brien J, Al Ubaidi MR (2003) Peripherin/rds in skate retina. Adv Exp Med Biol 533:377–383

    Article  PubMed  CAS  Google Scholar 

  • Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EA, Arts P, Wieskamp N, Strom TM, Ayuso C, Tilanus MA, Bouwhuis S, Mukhopadhyay A, Scheffer H, Hoefsloot LH, Veltman JA, Cremers FP, Collin RW (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247

    Article  PubMed  CAS  Google Scholar 

  • Oyster CW (1999) The human eye: structure and function. Sinauer Associates, Sunderland

    Google Scholar 

  • Pan Y, Brown C, Wang X, Geisert EE (2007) The developmental regulation of CD81 in the rat retina. Mol Vis 13:181–189

    PubMed  CAS  Google Scholar 

  • Pendergast SD, Trese MT (1998) Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology 105:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Poetsch A, Molday LL, Molday RS (2001) The cGMP-gated channel and related glutamic acid-­rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem 276:48009–48016

    PubMed  CAS  Google Scholar 

  • Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, Mackey DA, Kearns LS, Ruddle JB, Craig JE, Pierce EA, Downey LM, Mohamed MD, Markham AF, Inglehearn CF, Toomes C (2010) Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 86:248–253

    Article  PubMed  CAS  Google Scholar 

  • Rehm HL, Zhang DS, Brown MC, Burgess B, Halpin C, Berger W, Morton CC, Corey DP, Chen ZY (2002) Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J Neurosci 22:4286–4292

    PubMed  CAS  Google Scholar 

  • Ritter LM, Boesze-Battaglia K, Tam BM, Moritz OL, Khattree N, Chen SC, Goldberg AF (2004) Uncoupling of photoreceptor peripherin/rds fusogenic activity from biosynthesis, subunit assembly, and targeting: a potential mechanism for pathogenic effects. J Biol Chem 279:39958–39967

    Article  PubMed  CAS  Google Scholar 

  • Ritter LM, Arakawa T, Goldberg AFX (2005) Predicted and measured disorder in peripherin/rds, a retinal tetraspanin. Protein Pept Lett 12:677–686

    Article  PubMed  CAS  Google Scholar 

  • Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Sunderland

    Google Scholar 

  • Sammut SJ, Finn RD, Bateman A (2008) Pfam 10 years on: 10,000 families and still growing. Brief Bioinform 9:210–219

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, Jansen HG (1981) Absence of receptor outer segments in the retina of rds mutant mice. Neurosci Lett 21:23–26

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, De Ruiter A, Hawkins RK (1980) Development and degeneration of retina in rds mutant mice: light microscopy. J Comp Neurol 194:193–207

    Article  PubMed  CAS  Google Scholar 

  • Segrest JP, Garber DW, Brouillette CG, Harvey SC, Anantharamaiah GM (1994) The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem 45:303–369

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H (2001) Structure of the tetraspanin main extracellular domain—a partially conserved fold with a structurally variable domain insertion. J Biol Chem 276:40055–40064

    Article  PubMed  CAS  Google Scholar 

  • Serru V, Dessen P, Boucheix C, Rubinstein E (2000) Sequence and expression of seven new tetraspans. Biochim Biophys Acta 1478:159–163

    Article  PubMed  CAS  Google Scholar 

  • Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S, Marshall K, Banfi S, Surace EM, Sun J, Redmond TM, Zhu X, Shindler KS, Ying GS, Ziviello C, Acerra C, Wright JF, McDonnell JW, High KA, Bennett J, Auricchio A (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650

    Article  PubMed  CAS  Google Scholar 

  • Song BK, Levy S, Geisert EE Jr (2004) Increased density of retinal pigment epithelium in cd81-/- mice. J Cell Biochem 92:1160–1170

    Article  PubMed  CAS  Google Scholar 

  • Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–508

    Article  PubMed  CAS  Google Scholar 

  • Stricker HM, Ding XQ, Quiambao A, Fliesler SJ, Naash MI (2005) The Cys214-->Ser mutation in peripherin/rds causes a loss-of-function phenotype in transgenic mice. Biochem J 388:605–613

    Article  PubMed  CAS  Google Scholar 

  • Tam BM, Moritz OL, Papermaster DS (2004) The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. Mol Biol Cell 15:2027–2037

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Travis GH, Brennan MB, Danielson PE, Kozak CA, Sutcliffe JG (1989) Identification of a photoreceptor-­specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338:70–73

    Article  PubMed  CAS  Google Scholar 

  • Travis GH, Sutcliffe JG, Bok D (1991) The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron 6:61–70

    Article  PubMed  CAS  Google Scholar 

  • Travis GH, Groshan KR, Lloyd M, Bok D (1992) Complete rescue of photoreceptor dysplasia and degeneration in transgenic retinal degeneration slow (rds) mice. Neuron 9:113–119

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi T, Craessaerts K, Bammens L, Bentahir M, Borgions F, Herdewijn P, Staes A, Timmerman E, Vandekerckhove J, Rubinstein E, Boucheix C, Gevaert K, De SB (2009) Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-­enriched microdomains. Nat Cell Biol 11:1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Belecky-Adams T, Adler R, Travis GH (1998) Identification of two rds/peripherin homologs in the chick retina. Invest Ophthalmol Vis Sci 39:440–443

    PubMed  CAS  Google Scholar 

  • Wistow G, Bernstein SL, Wyatt MK, Fariss RN, Behal A, Touchman JW, Bouffard G, Smith D, Peterson K (2002) Expressed sequence tag analysis of human RPE/choroid for the NEIBank project: over 6000 non-redundant transcripts, novel genes and splice variants. Mol Vis 8:205–220

    PubMed  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-­function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

  • Wright MD, Tomlinson MG (1994) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15:588–594

    Article  PubMed  CAS  Google Scholar 

  • Wrigley JD, Ahmed T, Nevett CL, Findlay JB (2000) Peripherin/rds influences membrane vesicle morphology. Implications for retinopathies. J Biol Chem 275:13191–13194

    Article  PubMed  CAS  Google Scholar 

  • Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Xia CH, Liu H, Cheung D, Wang M, Cheng C, Du X, Chang B, Beutler B, Gong X (2008) A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Hum Mol Genet 17:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895

    Article  PubMed  CAS  Google Scholar 

  • Xu DS, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 23:3674–3681

    Article  PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J (2009) Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139:285–298

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Wang Y, Nathans J (2010) The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 16:417–425

    Article  PubMed  CAS  Google Scholar 

  • Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15:700–725

    PubMed  CAS  Google Scholar 

  • Zallocchi M, Meehan DT, Delimont D, Askew C, Garige S, Gratton MA, Rothermund-Franklin CA, Cosgrove D (2009) Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors. Hear Res 255:109–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Molday LL, Molday RS, Sarfare SS, Woodruff ML, Fain GL, Kraft TW, Pittler SJ (2009) Knockout of GARPs and the beta-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity. J Cell Sci 122:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Zuniga FI, Craft CM (2010) Deciphering the structure and function of Als2cr4 in the mouse retina. Invest Ophthalmol Vis Sci 51:4407–4415

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the members of his laboratory for their conscientious research efforts, and Drs. B. Anand-Apte (Cleveland Clinic) and B.S. Winkler (Oakland University) for their comments on the manuscript. This research was supported by the National Eye Institute and the E. Matilda Zeigler Foundation for the Blind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew F. X. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goldberg, A.F.X. (2013). Essential Tetraspanin Functions in the Vertebrate Retina. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_13

Download citation

Publish with us

Policies and ethics