Skip to main content

Development Trends and Application Prospects for Modern Solid-State Fermentation

  • Chapter
  • First Online:
Modern Solid State Fermentation
  • 2674 Accesses

Abstract

Solid-state fermentation (SSF) has unique water- and energy-saving advantages. Some problems related to it need to be solved before effective industrial production. Theoretical and technical breakthroughs are needed to boost the progress of SSF technology and engineering. In-depth knowledge of the nature of SSF is necessary. Research and application of online monitoring technology are key points in regulation of the SSF process. A new solid-state bioreactor was designed and manufactured to meet the needs of current industrial production. It is important to study optimization of the mixed fermentation process. Multidisciplinary research on basic theory and industrial applications is needed, and breakthroughs in SSF for solution of problems should continue. An overview of biomass bioconversion by SSF and corresponding advances achieved in recent years are discussed, especially progress achieved by our group based on the characteristics of solid biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam M. Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem Eng J. 2009;46:61–4.

    Article  CAS  Google Scholar 

  • Bear J. Dynamics of fluids in porous media. New York: American Elsevier; 1972.

    Google Scholar 

  • Chandel AK, da Silva SS, Carvalho W, Singh OV. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol. 2012;87:11–20.

    Article  CAS  Google Scholar 

  • Chen HZ. Biomass science and engineering. Beijing: Chemical Industrial Press; 2008.

    Google Scholar 

  • Chen HZ, Li ZH. Ethanol preparation by solid-state enzymatic saccharification solid-state enzymatic, fermentation and separation technique and apparatus. Chinese Patent No. 1493694; 2004.

    Google Scholar 

  • Chen HZ, Qiu WH. Key technologies for bioethanol production from lignocellulose. Biotechnol Adv. 2010;28:556–62.

    Article  PubMed  Google Scholar 

  • Chen HZ, Xu J. Principle and application of modern solid-state fermentation. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  • Chen HZ, Xu FJ, Tian ZH, Li ZH. A novel industrial-level reactor with two dynamic changes of air for solid-state fermentation. J Biosci Bioeng. 2002;93:211–4.

    Article  CAS  Google Scholar 

  • Chen HW, Ye SH, Ji H. Production of protein feed from a mixture of lees fermented by multi-strains. China Brew. 2006;6:74–7.

    Google Scholar 

  • Chen HZ, Xu J, Li ZH. Temperature cycling to improve the ethanol production with solid state simultaneous saccharification and fermentation. Appl Biochem Microbiol. 2007;43:57–60.

    Article  Google Scholar 

  • Chen HZ, Ding WY, Dai SH, Li J, Wang L. Continuous anaerobic SSF coupled with CO2 gas stripping technique and apparatus. Chinese Patent No. 101633940; 2008.

    Google Scholar 

  • Chen HZ, Li HQ, Liu LY. The inhomogeneity of corn stover and its effects on bioconversion. Biomass Bioenerg. 2011a;35:1940–5.

    Article  CAS  Google Scholar 

  • Chen HZ, He Q, Liu LY. Cellulase production from the corn stover fraction based on the organ and tissue. Biotechnol Bioprocess Eng. 2011b;16:867–74.

    Article  CAS  Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod. 2011;34:1160–7.

    Article  CAS  Google Scholar 

  • Duan YY, Chen HZ. Effect of three-phase structure of solid-state fermentation substrates on its transfer properties. CIESC J. 2012;63:1204–10.

    CAS  Google Scholar 

  • Fan L, Lee YH, Beardmore D. Major chemical and physical features of cellulosic materials as substrates for enzymatic hydrolysis. Adv Biochem Eng. 1980;14:101–17.

    Article  CAS  Google Scholar 

  • Grethlein HE. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol. 1985;3:155–60.

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–7.

    Article  PubMed  CAS  Google Scholar 

  • Hölker H, Lenz J. Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol. 2005;8:301–6.

    Article  PubMed  Google Scholar 

  • Holker U, Hofer M, Lenz J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol. 2004;64:175–86.

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Ye XH, Zhang YHP. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir. 2007;23:12535–40.

    Article  PubMed  CAS  Google Scholar 

  • Huang DM, Wu QF, Lu JM, et al. Current research progress of solid state fermentation technology and equipment. Food Ferment Ind. 2003;6:87–91.

    Google Scholar 

  • Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris B. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol. 2003;86:207–13.

    Article  PubMed  CAS  Google Scholar 

  • Krishna C. Solid-state fermentation systems—an overview. Crit Rev Biotechnol. 2005;25:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Li HQ, Chen HZ. The periodic change of environment factors in solid state fermentation and effect on microorganism fermentation. Chin J Biotechnol. 2005;21:440–5.

    CAS  Google Scholar 

  • Li HQ, Chen HZ. Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem. 2008;43:1447–51.

    Article  CAS  Google Scholar 

  • Liu J, Yang J. Process calorimetry on solid-state fermentation of vinegar wastes in bioreactor with air pressure pulsation. Chem Biochem Eng Q. 2006;20:449–55.

    Google Scholar 

  • Liu J, Li D, Yang J. Operating characteristics of solid-state fermentation bioreactor with air pressure pulsation. Appl Biochem Microbiol. 2007;43:211–6.

    Article  Google Scholar 

  • Marsh A, Stuart D, Mitchell D, Howes T. Characterizing mixing in a rotating drum bioreactor for solid-state fermentation. Biotechnol Lett. 2000;22:473–7.

    Article  CAS  Google Scholar 

  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM, Pandey A. New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem. 2000;35:1211–25.

    Article  CAS  Google Scholar 

  • Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A. Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 2000;18:356–60.

    Article  PubMed  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.

    Article  PubMed  CAS  Google Scholar 

  • Raghavarao KSMS, Ranganathan TV, Karanth NG. Some engineering aspects of solid-state fermentation. Biochem Eng J. 2003;13:127–35.

    Article  CAS  Google Scholar 

  • Rinaldi R, Schüth F. Design of solid catalysts for the conversion of biomass. Energy Environ Sci. 2009;2:610–26.

    Article  CAS  Google Scholar 

  • Roussos S, Raimbault M, Prebois JP, Lonsane B. Zymotis, a large scale solid state fermenter design and evaluation. Appl Biochem Biotechnol. 1993;42:37–52.

    Article  CAS  Google Scholar 

  • Sangseethong K, Meunier-Goddik L, Tantasucharit U, Liaw ET, Penner M. Rationale for particle size effect on rates of enzymatic saccharification of microcrystalline cellulose. J Food Biochem. 2007;22:321–30.

    Article  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR. Recent advances in solid-state fermentation. Biochem Eng J. 2009;44:13–8.

    Article  CAS  Google Scholar 

  • Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Liu BH, Li ZH, Liu DM. Effects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-l in periodic pressure solid state fermenter. Process Biochem. 1999;34:25–9.

    Article  Google Scholar 

  • Wan CX, Li YB. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012. doi:10.1016.

  • Wu DC, Xu F, Sun B, Fu RW, He HK, Matyjaszewski K. Design and preparation of porous polymers. Chem Rev. 2012. doi:10.1021/cr200440z.

  • Xiros C, Vafiadi C, Topakas E, Christakopoulos P. Decrement of cellulose recalcitrance by treatment with ionic liquid (1-ethyl-3- methylimidazolium acetate) as a strategy to enhance enzymatic hydrolysis. J Chem Technol Biotechnol. 2012;87:629–34.

    Article  CAS  Google Scholar 

  • Xu FJ, Chen HZ, Li ZH. Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb Technol. 2002;30:45–8.

    Article  CAS  Google Scholar 

  • Xu CY, Ma FY, Zhang XY, Chen SL. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J Agric Food Chem. 2010;58:10893–8.

    Article  CAS  Google Scholar 

  • Yang X, Huang T, Tsao GT. Pressure pulsation in solid-phase fermentation. Appl Biochem Biotechnol. 2002;98:599–610.

    Article  PubMed  Google Scholar 

  • Yang QJ, Liu ZW, Xiong RQ. Study on flavor fermentation optimization of soy sauce by multi-strains fermentation. Guangdong Agric Sci. 2011;21:106–9.

    Google Scholar 

  • Ye D, Farriol X. Improving accessibility and reactivity of celluloses of annual plants for the synthesis of methylcellulose. Cellulose. 2005;12:507–15.

    Article  CAS  Google Scholar 

  • Yi AN, Jiang SS, Liang E. Reduction of corn stalk with solid fermentation by multi-strains. J Jilin Agric Sci. 2011;36:47–50.

    Google Scholar 

  • Zeng W, Chen HZ. Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresour Technol. 2009;100:1371–5.

    Article  PubMed  CAS  Google Scholar 

  • Zhang JJ. The technology of degradant for roughage treatment of multiple strain combination of microorganism fermentation and their innovative usage. China Dairy Cattle. 2012;6:12–6.

    Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenerg. 2007;31:250–4.

    Article  CAS  Google Scholar 

  • Zhao FY, Fan NJ, Zhu JC. Isolation and characterization of an efficient cellulose-decomposing strain YN1. Microbiol China. 2010;4:496–502.

    Google Scholar 

  • Zhao XB, Zhang LH, Liu DH. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin. 2012;6(4):465–82. doi:10.1002/bbb.1331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2013). Development Trends and Application Prospects for Modern Solid-State Fermentation. In: Modern Solid State Fermentation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6043-1_7

Download citation

Publish with us

Policies and ethics