Skip to main content

Intercropping

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 12))

Abstract

Intensive agricultural systems have negative impacts on soil and water quality, and on biodiversity conservation. The evolution of intercropping is controlled by a high degree of biodiversity. In sharp contrast intensive agricultural systems uses monocultures associated with high input of chemical fertilisers and pesticides. Intercropping involves two or more crops in the same field at the same time. Intercropping increases biodiversity, improving the ability of an agricultural system to handle changes in growing conditions. Intercropping plays a pivotal role for increasing land use efficiency, weed suppression, enhanced ecological services and greater economic profitability. Benefits of intercropping include improved yields and yield stability, enhanced use of water and nutrients, increased weed suppression, increased pest and disease resistance, reduced soil erosion and improved forage quality.

This review reports the relationships between plants in intercropping to understand and design intercropping systems, with special focus on intercropping efficiency. The most common index showing yield advantage of intercropping is the land equivalent ratio (LER). The LER provides a standardized basis so that crops can be added to form ‘combined’ yields. The LER indicates competitive effects by comparison of individual LER. LER can measure relative yield advantage. We also present new ways to determine and use the LER.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agegnehu G, Ghizaw A, Sinebo W (2006) Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur J Agron 25:202–207. doi:10.1016/j.eja.2006.05.002

    Article  Google Scholar 

  • Altieri MA, Liebman M (1986) Insect, weed and plant disease management in multiple cropping. In: Francis CA (ed) Multiple cropping system, vol 1. McMillan, New York, pp 183–218

    Google Scholar 

  • Andrews DJ, Kassam AH (1976) Importance of multiple cropping in increasing world food supplies. In: Papendick RI, Sanchez A, Triplett GB (eds) Multiple cropping. Am Soc Agron Spec 27:1–10

    Google Scholar 

  • Anil L, Park J, Phipps RH, Miller FA (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci 53:301–317

    Article  Google Scholar 

  • Balasubramanian V, Sekayange L (1990) Area harvests equivalency ratio for measuring efficiency in multiseason intercropping. Agron J 82:519–522

    Article  Google Scholar 

  • Banik P, Bagchi DK (1994) Evaluation of rice (Oryza sativa) and legume intercropping in upland situation of Bihar plateau. Indian J Agric Sci 64:364–368

    Google Scholar 

  • Banik P, Sasmal T, Ghosal PK, Bagchi DK (2000) Evaluation of mustard (Brassica campestris var Toria) and legume intercropping under 1:1 and 1:2 row replacement series systems. J Agron Crop Sci 185:9–14. doi:10.1046/j.1439-037X.2000.00388.x

    Article  Google Scholar 

  • Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron 24:325–332. doi:10.1016/j.eja.2005.10.010

    Article  Google Scholar 

  • Beets WC (1982) Multiple cropping and tropical farming systems. Westview Press, Boulder

    Google Scholar 

  • Benites JR, McCollum RE, Naderman GC (1993) Production efficiency of intercrops relative to sequentially planted sole crops in a humid tropical environment. Field Crop Res 31:1–18. doi:10.1016/0378-4290(93)90046-P, 10.1016/0378-4290%2893%2990046-P

    Article  Google Scholar 

  • Bulson HAJ, Snaydn RW, Stopes CE (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agric Sci 128:59–71

    Article  Google Scholar 

  • Buxton CL, Fales SL (1993) Plant environment and quality. In: Fahey GC Jr (ed) Forage quality, evaluation and utilization. ASA, CSSA and SSSA, Madison

    Google Scholar 

  • Caballero R, Goicoechea EL (1986) Utilization of winter cereals as companion crops for common vetch and hairy vetch. In: Proceedings of the 11th general meeting of the European grassland federation, Setubal, pp 379–384

    Google Scholar 

  • Caballero R, Goicoechea EL, Hernaiz PJ (1995) Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of common vetch. Field Crop Res 41:135–140

    Article  Google Scholar 

  • Carr PM, Martin GB, Caton JS, Poland WW (1998) Forage and nitrogen yield of barley–pea and oat–pea intercrops. Agron J 90:79–84

    Article  Google Scholar 

  • Carr PM, Horsley RD, Poland WW (2004) Barley, oat and cereal-pea mixtures as dryland forages in the Northern Great Plains. Agron J 96:677–684

    Article  Google Scholar 

  • Chen C, Westcott M, Neill K, Wichmann D, Knox M (2004) Row configuration and nitrogen application for barley-pea intercropping in Montana. Agron J 96:1730–1738

    Article  Google Scholar 

  • Connolly J, Goma HC, Rahim K (2001) The information content of indicators in intercropping research. Agric Ecosyst Environ 87(2):191–207. doi:10.1016/S0167-8809(01)00278-X, 10.1016/S0167-8809%2801%2900278-X

    Article  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs human needs. Agric Ecosyst Environ 102:279–297. doi:10.1016/j.agee.2003.09.018

    Article  Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72:101–120. doi:10.1007/s10705-004-6480-1

    Article  CAS  Google Scholar 

  • Dapaah HK, Asafu-Agyei JN, Ennin SA, Yamoah CY (2003) Yield stability of cassava, maize, soybean and cowpea intercrops. J Agric Sci 140:73–82

    Article  Google Scholar 

  • DeWit CT, Vanden Bergh JP (1960) Competition between herbage plants. Neth J Agric Sci 13(2):212–221

    Google Scholar 

  • Dhima KV, Lithourgidis AS, Vasilakoglou IB, Dordas CA (2007) Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crop Res 100:249–256. doi:10.1016/j.fcr.2006.07.008

    Article  Google Scholar 

  • Droushiotis DN (1989) Mixtures of annual legumes and small-grained cereals for forage production under low rainfall. J Agric Sci 113:249–253. doi:10.1017/S0021859600086834

    Article  Google Scholar 

  • Exner DN, Cruse RM (1993) Interseeded forage legume potential as winter ground cover, nitrogen source, and competition. J Prod Agric 6:226–231

    Google Scholar 

  • Francis CA (1986) Future perspectives of multiple cropping. In: Francis CA (ed) Multiple cropping systems. Macmillan, New York, pp 351–370

    Google Scholar 

  • Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume–cereal cropping systems. Plant Soil 141:155–175. doi:10.1007/BF00011315

    Article  CAS  Google Scholar 

  • Ghosh PK (2004) Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crop Res 88:227–237. doi:10.1016/j.fcr.2004.01.015

    Article  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:225–277

    Article  Google Scholar 

  • Giller KE, Wilson KJ (1991) Nitrogen fixation and tropical cropping systems. CAB International, Wallingford, pp 10–120

    Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16

    Article  Google Scholar 

  • Gomez AA, Gomez KA (1983) Multiple cropping in the humid tropics of Asia, IDRC 176E. IDRC, Ottawa

    Google Scholar 

  • Gooding MJ, Kasynova E, Ruske R (2007) Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J Agric Sci 145:469–479

    Article  CAS  Google Scholar 

  • Griffon M (1999) Développement durable et agriculture: la révolution doublement verte. Cah Agric 8:259–267

    Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001a) Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crop Res 70:101–109

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001b) Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops – a field study employing P-32 technique. Plant Soil 236:63–74

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosyst 65:289–300

    Article  CAS  Google Scholar 

  • Hiebsch CK, McCollum RE (1987) Area x time equivalency ratio: a method for evaluating the productivity of intercrops’. Agron J 79:945–946

    Article  Google Scholar 

  • Izaurralde RC, Juma NG, McGill WB (1990) Plant and nitrogen yield of barley field pea intercrop in cryoboreal-subhumid central Alberta. Agron J 82:295–301

    Article  Google Scholar 

  • Javanmard A, Nasab ADM, Javanshir A, Moghaddam M, Janmohammadi H (2009) Forage yield and quality in intercropping of maize with different legumes as double-cropped. J Food Agric Environ 7:163–166

    Google Scholar 

  • Jensen ES (1996a) Compared cycling in a soil–plant system of pea and barley residue nitrogen. Plant Soil 182:13–23. doi:10.1007/BF00010991

    Article  CAS  Google Scholar 

  • Jensen ES (1996b) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea–barley intercrops. Plant Soil 182:25–38. doi:10.1007/BF00010992

    Article  CAS  Google Scholar 

  • Jeyabal A, Kuppuswamy G (2001) Recycling of organic wastes for the production of vermicompost and its response in rice–legume cropping system and soil fertility. Eur J Agron 15:153–170

    Article  CAS  Google Scholar 

  • Li L, Sun J, Zhang F, Guo T, Bao X, Smith FA, Smith SE (2006) Root distribution and interactions between intercropped species. Oecologia 147:280–290

    Article  PubMed  Google Scholar 

  • Lithourgidis AS, Dhima KV, Vasilakoglou IB, Yiakoulaki MD (2004) Mixtures of cereals and common vetch for forage production and their competition with weeds. In: Proceedings of 10th conference genetics and plant breeding society of Greece, Athens

    Google Scholar 

  • Lithourgidis AS, Vasilakoglou IB, Dhima KV, Dordas CA, Yiakoulaki MD (2006) Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop Res 99:106–113. doi:10.1016/j.fcr.2006.03.008

    Article  Google Scholar 

  • Maingi MJ, Shisanya AC, Gitonga MN, Hornetz B (2001) Nitrogen fixation by common bean (Phaseolus vulgaris L.) in pure and mixed stands in semi arid South east Kenya. Eur J Agron 14:1–12

    Article  CAS  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62

    Article  Google Scholar 

  • Mead R, Willey RW (1980) The concept of a land equivalent ratio and advantages in yields for intercropping. Exp Agric 16:217–228

    Article  Google Scholar 

  • Midya A, Bhattacharjee K, Ghose SS, Banik P (2005) Deferred seeding of blackgram (Phaseolus mungo L.) in rice (Oryza sativa L.) field on yield advantages and smothering of weeds. J Agron Crop Sci 191:195–201. doi:10.1111/j.1439-037X.2005.00157.x

    Article  Google Scholar 

  • Mitchell CE, Tilman D, Groth JV (2002) Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83:1713–1726

    Article  Google Scholar 

  • Moody K, Shetty SVR (1979) Weed management in intercropping systems. In: Proceedings of the international workshop on intercropping. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, pp 229–237, 10–13 Jan 1979

    Google Scholar 

  • Ofori F, Stern WR (1987) Cereal-legume intercropping systems. Adv Agron 41:41–90

    Article  Google Scholar 

  • Papastylianou I (1990) Response of pure stands and mixtures of cereals and legumes to nitrogen fertilization and residual effect on subsequent barley. J Agric Sci 115:15–22

    Article  Google Scholar 

  • Qamar IA, Keatinge JDH, Mohammad N, Ali A, Khan MA (1999) Introduction and management of vetch/barley forage mixtures in the rain fed areas of Pakistan. 3. Residual effects on following cereal crops. Aust J Agric Res 50:21–27

    Article  Google Scholar 

  • Roberts CA, Moore KJ, Johnson KD (1989) Forage quality and yield of wheat-vetch at different stages of maturity and vetch seeding rate. Agron J 81:57–60

    Article  Google Scholar 

  • Russell AE (2002) Relationships between crop-species diversity and soil characteristics in southwest Indian agroecosystems. Agric Ecosyst Environ 92:235–249. doi:10.1016/S0167-8809(01)00295-X, 10.1016/S0167-8809%2801%2900295-X

    Article  Google Scholar 

  • Stinner BR, Blair JM (1990) Ecological and agronomic characteristics of innovative cropping systems. In: Sustainable agricultural systems. Soil and Water Conservation Society, Ankeny

    Google Scholar 

  • Swift MJ, Anderson JM (1993) Biodiversity and ecosystem function in agricultural systems. In: Mooney HA, Schulze ED (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 15–41

    Google Scholar 

  • Thompson DJ, Stout DG, Moore T (1992) Forage production by four annual cropping sequences emphasizing barley irrigation in southern interior British Columbia. Can J Plant Sci 72:181–185

    Article  Google Scholar 

  • Thomson EF, Rihawi S, Nersoyan N (1990) Nutritive value and yields of some forage legumes and barley harvested as immature herbage, hay and straw in North-West Syria. Exp Agric 26:49–56

    Article  Google Scholar 

  • Tilman D, Cassman K, Matson P, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Article  PubMed  CAS  Google Scholar 

  • Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crop Res 34:381–405

    Article  Google Scholar 

  • Trenbath BR (1999) Multispecies cropping systems in India – Predictions of their productivity, stability, resilience and ecological sustainability. Agroforest Syst 45:81–107. doi:10.1023/A:1006285319817

    Article  Google Scholar 

  • Tsubo M, Walker S, Ogindo HO (2005) A simulation model of cereallegume intercropping systems for semi-arid regions II. Model application. Field Crop Res 93:23–33. doi:10.1016/j.fcr.2004.09.002

    Article  Google Scholar 

  • Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Vandermeer JH (1990) Intercropping. In: Caroll CR, Vandermeer JH, Rosset PM (eds) Agroecology, vol 1. McGraw-Hill, New York, pp 481–516

    Google Scholar 

  • Vandermeer JH, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22

    Article  Google Scholar 

  • Vasilakoglou IB, Lithourgidis AS, Dhima KV (2005) Assessing common vetch–cereal intercrops for suppression of wild oat. In: Proceedings of 13th international symposium, session S5, European Weed Research Society, Bari

    Google Scholar 

  • Vasilakoglou I, Dhima K, Lithourgidis A, Eleftherohorinos I (2008) Competitive ability of winter cereal-common vetch intercrops against sterile oat. Exp Agric 44:509–520

    Article  Google Scholar 

  • Willey RW (1979a) Intercropping: its importance and research needs. Part 1. Competition and yield advantages. Field Crop Abstr 32:1–10

    Google Scholar 

  • Willey RW (1979b) Intercropping: its importance and research needs. Part-II. Agronomy and research approaches. Field Crop Abstr 32:73–82

    Google Scholar 

  • Willey RW, Osiru DSO (1972) Studies on mixtures of maize and beans (phaseolus-vulgaris) with particular reference to plant population. J Agric Sci 79:517–529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Neamatollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Neamatollahi, E., Jahansuz, M.R., Mazaheri, D., Bannayan, M. (2013). Intercropping. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5961-9_4

Download citation

Publish with us

Policies and ethics