Skip to main content

Clonogenicity of Cultured Prostate Cancer Cells Is Controlled by Dormancy: Significance and Comparison with Cell Culture Models of Breast Cancer Cell Dormancy

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 1

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

  • 1448 Accesses

Abstract

The metastatic disease determines the cancer-specific death of most patients suggesting that decreasing the rate of metastasis should translate into increased cancer-specific survival. Several experiments in mice suggest that a major limiting step of the metastatic process is the ability of single cancer cells to proliferate at distant sites. Most dispersed cancer cells disseminated in distant organs seem to remain dormant for long period before eventually dying or resuming cell proliferation to give rise to micrometastases. The study of these dispersed dormant cells is made difficult by their rarity and the difficulty to isolate them into a viable cell population. Our recently published work shows that a dormant state can be easily induced in prostate cancer cells ex vivo in cell culture. Indeed, if and only if cells are cultured at low clonal density, slightly hypertonic conditions will induce a dormant state leading to an almost 1,000-fold reduction in clonogenicity. Our data suggest that a full dormant state is a stable anergic state actively generated in dispersed cells in response to specific growth conditions, and which may require special growth stimuli to be reversed. Here we compare this model with two examples of breast cancer cell dormancy induced in vitro in order to highlight their convergences and discuss the link between dormancy, epithelial-mesenchymal transition and stemness. We suggest that despite some ­similarities with stem cell dormancy, dormancy of epithelial cancer cells may be related to a reversible differentiation-like process. We also discuss the applications of the culture model of prostate cancer cell dormancy with emphasis on the development of new tools to fight the metastatic disease at the clonogenic step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ, Garcia-Blanco MA (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Balk SP (2002) Androgen receptor as a target in androgen-independent prostate cancer. Urology 60:132–138

    Article  PubMed  Google Scholar 

  • Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S et al (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250

    Article  PubMed  CAS  Google Scholar 

  • Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J et al (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70:5706–5716

    Article  PubMed  CAS  Google Scholar 

  • Barrios J, Wieder R (2009) Dual fgf-2 and intergrin alpha5beta1 signaling mediate graf-induced rhoa inactivation in a model of breast cancer dormancy. Cancer Microenviron 2:33–47

    Article  PubMed  Google Scholar 

  • Bissell DM, Arenson DM, Maher JJ, Roll FJ (1987) Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest 79:801–812

    Article  PubMed  CAS  Google Scholar 

  • Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  • Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, Chambers AF, MacDonald IC (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60:2541–2546

    PubMed  CAS  Google Scholar 

  • Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A (2011) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 5:19–28

    Article  PubMed  Google Scholar 

  • Danielpour D (1999) Transdifferentiation of nrp-152 rat prostatic basal epithelial cells toward a luminal phenotype: regulation by glucocorticoid, insulin-like growth factor-I and transforming growth factor-beta. J Cell Sci 112(Pt 2):169–179

    PubMed  CAS  Google Scholar 

  • Essers MA, Trumpp A (2010) Targeting leukemic stem cells by breaking their dormancy. Mol Oncol 4:443–450

    Article  PubMed  Google Scholar 

  • Fenig E, Wieder R, Paglin S, Wang H, Persaud R, Haimovitz-Friedman A, Fuks Z, Yahalom J (1997) Basic fibroblast growth factor confers growth inhibition and mitogen-activated protein kinase activation in human breast cancer cells. Clin Cancer Res 3:135–142

    PubMed  CAS  Google Scholar 

  • Fenig E, Kanfi Y, Wang Q, Beery E, Livnat T, Wasserman L, Lilling G, Yahalom J, Wieder R, Nordenberg J (2001) Role of transforming growth factor beta in the growth inhibition of human breast cancer cells by basic fibroblast growth factor. Breast Cancer Res Treat 70:27–37

    Article  PubMed  CAS  Google Scholar 

  • Gil-Bernabe AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH, Watson K, Hill SA, Amirkhosravi A, Francis JL et al (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119:3164–3175

    Article  PubMed  CAS  Google Scholar 

  • Havard M, Dautry F, Tchenio T (2011) A dormant state modulated by osmotic pressure controls clonogenicity of prostate cancer cells. J Biol Chem 286:44177–44186

    Article  PubMed  CAS  Google Scholar 

  • Janni W, Rack B, Schindlbeck C, Strobl B, Rjosk D, Braun S, Sommer H, Pantel K, Gerber B, Friese K (2005) The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer 103:884–891

    Article  PubMed  Google Scholar 

  • Korah R, Boots M, Wieder R (2004) Integrin alpha5beta1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res 64:4514–4522

    Article  PubMed  CAS  Google Scholar 

  • Lee SO, Tian J, Huang CK, Ma Z, Lai KP, Hsiao H, Jiang M, Yeh S, Chang C (2012) Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. J Endocrinol 213(2):173–182

    Article  PubMed  CAS  Google Scholar 

  • Lindley LE, Briegel KJ (2010) Molecular characterization of TGFbeta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells. Biochem Biophys Res Commun 399:659–664

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S et al (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4:37–48

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, He DL, Ning L, Shen SL, Li L, Li X (2006) Hypoxia-inducible factor-1alpha induces the epithelial-mesenchymal transition of human prostate cancer cells. Chin Med J (Engl) 119:713–718

    CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3:e2888

    Article  PubMed  Google Scholar 

  • Morris VL, Koop S, MacDonald IC, Schmidt EE, Grattan M, Percy D, Chambers AF, Groom AC (1994) Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metastasis 12:357–367

    Article  PubMed  CAS  Google Scholar 

  • Najmi S, Korah R, Chandra R, Abdellatif M, Wieder R (2005) Flavopiridol blocks integrin-mediated survival in dormant breast cancer cells. Clin Cancer Res 11:2038–2046

    Article  PubMed  CAS  Google Scholar 

  • Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62:2162–2168

    PubMed  CAS  Google Scholar 

  • Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VH, Groom AC, Chambers AF (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206

    Article  PubMed  CAS  Google Scholar 

  • Oltean S, Sorg BS, Albrecht T, Bonano VI, Brazas RM, Dewhirst MW, Garcia-Blanco MA (2006) Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci USA 103:14116–14121

    Article  PubMed  CAS  Google Scholar 

  • Rak JW, McEachern D, Miller FR (1992) Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br J Cancer 65:641–648

    Article  PubMed  CAS  Google Scholar 

  • Salm SN, Burger PE, Coetzee S, Goto K, Moscatelli D, Wilson EL (2005) TGFbeta maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 170:81–90

    Article  PubMed  CAS  Google Scholar 

  • Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106:10290–10295

    Article  PubMed  CAS  Google Scholar 

  • Ungefroren H, Sebens S, Groth S, Gieseler F, Fandrich F (2011) The src family kinase inhibitors pp2 and pp1 block TGFbeta1-mediated cellular responses by direct and differential inhibition of type I and type II TGFbeta receptors. Curr Cancer Drug Targets 11:524–535

    Article  PubMed  CAS  Google Scholar 

  • van Leenders GJ, Schalken JA (2003) Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol 46:S3–S10

    Article  PubMed  Google Scholar 

  • Vessella RL, Pantel K, Mohla S (2007) Tumor cell dormancy: an nci workshop report. Cancer Biol Ther 6:1496–1504

    Article  PubMed  Google Scholar 

  • Wells A, Yates C, Shepard CR (2008) E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 25:621–628

    Article  PubMed  CAS  Google Scholar 

  • Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP (2011) Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell 22:2423–2435

    Article  PubMed  CAS  Google Scholar 

  • Wiedswang G, Borgen E, Karesen R, Qvist H, Janbu J, Kvalheim G, Nesland JM, Naume B (2004) Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res 10:5342–5348

    Article  PubMed  Google Scholar 

  • Yamazaki S, Nakauchi H (2009) Insights into signaling and function of hematopoietic stem cells at the single-cell level. Curr Opin Hematol 16:255–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. François Dautry for his critical reading of the manuscript and helpful comments. Most of the work on prostate cancer cell dormancy was conducted in the laboratory of Dr. François Dautry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Tchénio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tchénio, T. (2013). Clonogenicity of Cultured Prostate Cancer Cells Is Controlled by Dormancy: Significance and Comparison with Cell Culture Models of Breast Cancer Cell Dormancy. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_5

Download citation

Publish with us

Policies and ethics