Skip to main content

Senescence Arrest of Endopolyploid Cells Renders Senescence into One Mechanism for Positive Tumorigenesis

  • Chapter
  • First Online:

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

Abstract

The present chapter analyses the cellular genomic status and type of cell divisions of pre-senescent cell populations shortly before the senescent phase. The purpose was to identify cellular mechanisms contributing to genomic unstable escape cells from senescence, in likeness with cancer recurrence from dormancy/remission periods. Primary diploid, human fibroblast cells were passage-extended to dysfunctional telomere-induced senescence (TAS) during which endopolyploidization occurred shortly before senescence. These cells either reduced genomic content to unstable near-diploid cells by irregular whole complement co-segregation, perpendicularly to the cytoskeleton axis or by nuclear fragmentation into multinuclear cells. The endo-division offspring-cells acquired genomic/chromosomal instability (CIN) from inheritance of endo-division traits, and gained proliferative freedom from contact inhibition by the perpendicularity of the endo-division. Other cells during this low proliferative period showed chromosomal aberrations and mitotic restitution, before a general change to senescent cells. The senescent phase showed change to typical cytoplasmic rich, amorphous flat cells, which were beta-galactosidase positive. Several types of escape mechanisms were observed (most frequent: nuclear bud-offs) which were associated with mitotic activity, albeit with limited propagation. These cells showed slight cell-shape changes from cell polarity change – a trait caused by endo-division perpendicularity. In experiments designed to simulate tumor therapy-induced genomic damage (to kill cells) endopolyploid cycling activity was increased before change to large amorphous, senescent cells. Young senescent escape-cells used the bud-off escape route, whereas escapes from old cells showed triangular cells in close contact with the senescent cells, which grew into three dimensional (3-D) tumor-like spheres. These observations were discussed as to tumor recurrence after prolonged dormancy/remission periods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beausejour CM, Krotolica A, Galimi F, Narita M, Lowe SW, Yawen P, Campisi J (2003) Reversal of human senescence: roles of p16 and p53 pathways. EMBO J 22:4212–4222

    Article  PubMed  CAS  Google Scholar 

  • Bignold LP, Coghland BLD, Jersmann HPA (2007) David von Hansemann: contributions to oncology: context, comments, and translations. Birkhauser Verlag, Basel

    Google Scholar 

  • Ceol CJ, Pellman D, Zon LI (2007) APC and colon cancer: two hits for one. Nat Med 13:1286–1287

    Article  PubMed  CAS  Google Scholar 

  • Chen JH, Ozanne SE (2006) Deep senescent human fibroblasts show diminished DNA damage foci but retain checkpoint capacity to oxidative stress. FEBS Lett 580:6669–6673

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumors: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Baradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumor biology: senescence in premalignant tumors. Nature 436:642

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  PubMed  CAS  Google Scholar 

  • D’Amato F (1989) Polyploidy in cell differentiation. Caryologia 42:183–211

    Google Scholar 

  • Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93

    Article  PubMed  CAS  Google Scholar 

  • Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP (2011) Polyploid tumor cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagy degradation. Cell Biol Int 35:687–695

    Article  PubMed  Google Scholar 

  • Freed JJ, Schatz SA (1969) Chromosome aberrations in cultured cells deprived of single essential amino acid. Exp Cell Res 55:393–409

    Article  PubMed  CAS  Google Scholar 

  • Haugstetter AM, Loddenkemper C, Lenze D, Grone J, Standfus C, Petersen I, Schmitt CA (2010) Cellular senescence predict treatment outcome in metastasized colorectal cancer. Br J Cancer 103:505–509

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  • Levan A, Hauschka TS (1953) Endomitotic reduplication mechanisms in ascites tumors of the mouse. J Natl Cancer Inst 14:1–43

    PubMed  CAS  Google Scholar 

  • Matsumura T, Zerrudo Z, Hayflick L (1979) Senescent human diploid cells in culture: survival, DNA synthesis and morphology. J Gerontol 34:328–334

    Article  PubMed  CAS  Google Scholar 

  • Mosieniak G, Sikora E (2010) Polyploidy: the link between senescence and cancer. Curr Pharm Des 16:734–740

    Article  PubMed  CAS  Google Scholar 

  • Puig P-E, Guilly M-N, Bouchot A, Droin N, Cathelin D, Bouyer F, Favier L, Ghiringhelli F, Kroemer G, Solary E, Martin F, Chauffert B (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32:1031–1043

    Article  PubMed  CAS  Google Scholar 

  • Roberson RS, Kussick SJ, Vallieres E, Chen S-YJ, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65:2795–2803

    Article  PubMed  CAS  Google Scholar 

  • Saunders WS, Shuster M, Huang X, Gharaibe B, Enyenihi AH, Petersen I, Gollin SM (2000) Chromosomal instability and cytoskeletal defects in oral cancer. Proc Natl Acad Sci 97:303–308

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  PubMed  CAS  Google Scholar 

  • Smith PJ, Marquez N, Wiltshire M, Chappell S, Njoh K, Campbell L, Khan IA, Silvestre O, Errington RJ (2007) Mitotic bypass via an occult cell cycle phase following DNA topoisomerase II inhibition in p53 functional human tumor cells. Cell Cycle 6:2071–2081

    Article  PubMed  CAS  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  • Vergel M, Marin JJ, Estevez P, Carnero A (2011) Cellular senescence as a target in cancer control. J Aging Res. doi:10.4061/2011/725365

  • Walen KH (1965) Spatial relationships in the replication of chromosomal DNA. Genetics 51:915–929

    PubMed  CAS  Google Scholar 

  • Walen KH (2002) The origin of transformed cells: studies of spontaneous and induced cell transformation in cell cultures from marsupials, a snail, and human amniocytes. Cancer Genet Cytogenet 133:45–54

    Article  PubMed  CAS  Google Scholar 

  • Walen KH (2004) Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. In Vitro Cell Dev Biol Anim 40:150–158

    Article  PubMed  Google Scholar 

  • Walen KH (2005) Budded karyoplasts from multinucleated fibroblast cells contain centrosome and change their morphology to mitotic cells. Cell Biol Int 29:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Walen KH (2006) Human diploid fibroblast cells in senescence: cycling through polyploidy to mitotic cells. In Vitro Cell Dev Biol Anim 42:216–224

    Article  PubMed  CAS  Google Scholar 

  • Walen KH (2007a) Origin of diplochromosomal polyploidy in near-senescent fibroblast cultures: heterochromatin, telomeres and chromosomal instability (CIN). Cell Biol Int 31:1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Walen KH (2007b) Bipolar genome reductional division of human near-senescent, polyploidy fibroblast cells. Cancer Genet Cytogenet 173:43–50

    Article  PubMed  CAS  Google Scholar 

  • Walen KH (2008) Genetic stability of senescence reverted cells: genome reduction division of polyploid cells, aneuploidy and neoplasia. Cell Cycle 7:1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Walen KH (2010) Mitosis is not the only distributor of mutated cells: non-mitotic enopolyploid cells produce reproductive genome reduced cells. Cell Biol Int 34:867–872

    Article  PubMed  Google Scholar 

  • Walen KH (2011) Normal human cell conversion to 3-D cancer-like growth: genome damage, endopolyploidy, senescence escape, and cell polarity change/loss. J Cancer Ther 2:181–189

    Article  Google Scholar 

  • Walen KH (2012) Genome reversion process of endopolyploidy confers chromosome instability on descendent diploid cells. Cell Biol Int 36:1–9

    Article  Google Scholar 

  • Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, Tavare S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I am very grateful to Dr. Carl Hanson of the Department of Public Health, Viral and Rickettsial Laboratory for critical comments and suggestions and to Chao Pan for computer assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten H. Walen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walen, K.H. (2013). Senescence Arrest of Endopolyploid Cells Renders Senescence into One Mechanism for Positive Tumorigenesis. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_18

Download citation

Publish with us

Policies and ethics