Skip to main content

HSP70 in Carcinogenesis

  • Chapter
  • First Online:
Book cover Immunity, Tumors and Aging: The Role of HSP70

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM,volume 6))

  • 967 Accesses

Abstract

Depending on the location, HSP70 has different, often opposite effects on carcinogenesis. Intracellular HSP70 contributes to tumour development by: (1) supporting protein homeostasis in a tumour cell, thus protecting the cell from the adverse conditions of external inflammation; (2) contributing to the proliferation of tumour cells because HSP70 stabilizes cyclin D1; and (3) suppressing oncogene-induced apoptosis and the aging program. As a result, intracellular HSP70 creates the most favourable internal conditions for tumour growth. Membrane-associated and extracellular HSP70, in contrast, mainly aid the immune system to destroy the tumour. Extracellular HSP70 may participate in antigen-presentation of a tumour specific antigen and facilitate the development of anti-tumour adaptive responses. Extracellular HSP70 released from tumour cells, can influence the immune system even in the absence of an antigenic peptide. Natural killer cells can recognize HSP70 located on the tumour cell membrane as a tumour-specific structure. Along with natural killer cells, T memory cells can also recognize and kill HSP70-positive tumour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Over time, due to each cell division, the telomere ends become shorter.

  2. 2.

    ERKs are involved in functions including the regulation of meiosis, mitosis and postmitotic functions in differentiated cells. Many different stimuli, including growth factors, cytokines, virus infection, ligands for G protein-coupled receptors, transforming agents, and carcinogens, activate the ERK pathway.

References

  • Afanasyev (1873) Narodnye russkie skazki (Russian fairy tale)

    Google Scholar 

  • Afanasyeva EA, Komarova EY, Larsson LG, Bahram F, Margulis BA, Guzhova IV (2007) Drug-induced Myc-mediated apoptosis of cancer cells is inhibited by stress protein Hsp70. Int J Cancer 121(12):2615–2621

    Article  PubMed  CAS  Google Scholar 

  • Ansieau S, Bastid J, Doreau A (2008) Induction of EMT by twist proteins as a collateral. Effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89

    Article  PubMed  CAS  Google Scholar 

  • Barnes JA, Dix DJ, Collins BW, Luft C, Allen JW (2001) Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress Chaper 6:316–325

    Article  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2(8):469–475

    Article  PubMed  CAS  Google Scholar 

  • Benanti JA, Galloway DA (2004) The normal. Response to RAS: senescence or transformation? Cell Cycle 3:715–717

    Article  PubMed  CAS  Google Scholar 

  • Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293

    Article  PubMed  CAS  Google Scholar 

  • Bihani T, Mason DX, Jackson TJ, Chen SC, Boettner B, Lin AW (2004) Differential oncogenic Ras signaling and senescence in tumor cells. Cell Cycle 3:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Blyth K, Stewart M, Bell M, James C, Evan G, Neil JC, Cameron ER (2000) Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycER (TM) mice. Oncogene 19:773–782

    Article  PubMed  CAS  Google Scholar 

  • Bouvard V, Zaitchouk T, Vacher M et al (2000) Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 19:649–660

    Article  PubMed  CAS  Google Scholar 

  • Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66:2881–2884

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (2005) Aging, tumor suppression and cancer: high wire-act! Mech Aging Dev 126:51–58

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins incancer:diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperon 10:86–103

    Article  CAS  Google Scholar 

  • Ciocca DR, Clark GM, Tandon AK, Fuqua SA, Welch WJ, McGuire WL (1993) Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 85:570–574

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Rosas S, Chindano A, Lima P, Madi K, Carvalho M (1997) Expression of heat shock protein 70 and P53 in human lung cancer. Oncol Rep 4:1113–1116

    PubMed  CAS  Google Scholar 

  • Creagh EM, Carmody RJ, Cotter TG (2000) Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells. Exp Cell Res 257:58–66

    Article  PubMed  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyperreplication. Nature 444:638–642

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Yang W, Rimerman RA, Xiao H, Emili A (2003) Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Mol Cell Biol 23:1764–1774

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW et al (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 93:3264–3268

    Article  PubMed  CAS  Google Scholar 

  • Ehrhart JC, Duthu A, Ullrich S, Appella E, May P (1988) Specific interaction between a subset of the p53 protein family and heat shock proteins hsp72/hsc73 in a human osteosarcoma cell line. Oncogene 3:595–603

    PubMed  CAS  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669

    Article  PubMed  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW et al (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22:3497–3508

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Wei JY, Mosser DD, Sherman MY (2000) Suppression of stress kinase JNK is involved in HSP72- mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stress-induced inhibition of JNK dephosphorylation. J Biol Chem 275:38088–38094

    Article  PubMed  CAS  Google Scholar 

  • Garbe JC, Holst CR, Bassett E, Tlsty T, Stampfer MR (2007) Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6:1927–1936

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Fromentin A, Bonnotte B et al (1998) Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58:5495–5499

    PubMed  CAS  Google Scholar 

  • Gehrmann M, Schmetzer H, Eissner G et al (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88(4):474–476

    PubMed  Google Scholar 

  • Gehrmann M, Liebisch G, Schmitz G et al (2008) Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3. PLoS ONE 3(4):e1925

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278(42):41173–41181

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Sigua C, Bali P et al (2005) Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 105:1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Gurbuxani S, Schmitt E, Cande C et al (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347(20):1593–1603

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (1979) Cell biology of aging. Fed Proc 38:1847–1850

    PubMed  CAS  Google Scholar 

  • Horváth I, Vígh L (2010) Cell biology: stability in times of stress. Nature 463(7280):436–438

    Article  PubMed  CAS  Google Scholar 

  • Horváth I, Multhoff G, Sonnleitner A, Vígh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778(7–8):1653–1664

    PubMed  Google Scholar 

  • Jäättelä M (1995) Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60:689–693

    Article  PubMed  Google Scholar 

  • Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43

    Article  PubMed  Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exertsitsanti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    Article  PubMed  Google Scholar 

  • Jiang B, Xiao W, Shi Y, Liu M, Xiao X (2005) Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperon 10(3):252–262

    Article  CAS  Google Scholar 

  • Kalinowska M, Garncarz W, Pietrowska M, Garrard WT, Widlak P (2005) Regulation of the human apoptotic DNase/RNase Endonuclease G: involvement of Hsp70 and ATP. Apoptosis 10:821–830

    Article  PubMed  CAS  Google Scholar 

  • Kelly S, Zhang ZJ, Zhao H et al (2002) Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52(2):160–167

    Article  PubMed  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  • Laad AD, Thomas ML, Fakih AR, Chiplunkar SV (1999) Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 80(5):709–714

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW (2004) Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke 35(9):2195–2199

    Article  PubMed  Google Scholar 

  • Lee JS, Lee JJ, Seo JS (2005) HSP70 deficiency results in activation of c-Jun N-terminal. Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280(8):6634–6641

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Lee SJ, Jung YS, Xu Y, Kang HS, Ha NC, Park BJ (2009) Blocking of p53-Snail binding, promoted by oncogenic K-Ras, recovers p53 expression and function. Neoplasia 11:22–31

    PubMed  CAS  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6(5):443–450

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Lee JS, Ko YG, Kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Pan J, Li JL et al (2007) Transcriptional changes associated with breast cancer occur as normal human mammary epithelial cells overcome senescence barriers and become immortalized. Mol Cancer 6:7

    Article  PubMed  CAS  Google Scholar 

  • Mason DX, Jackson TJ, Lin AW (2004) Molecular signature of oncogenic ras-induced senescence. Oncogene 23(57):9238–9246

    PubMed  CAS  Google Scholar 

  • Matsuda Y (2008) Molecular mechanism underlying the functional loss of cyclindependent kinase inhibitors p16 and p27 in hepatocellular carcinoma. World J Gastroenterol 14:1734–1740

    Article  PubMed  CAS  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910

    Article  PubMed  CAS  Google Scholar 

  • Matsumori Y, Northington FJ, Hong SM (2006) Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke 37(2):507–512

    Article  PubMed  CAS  Google Scholar 

  • McCormick JJ, Maher VM (1988) Towards an understanding of the malignant transformation of diploid human fibroblasts. Mutat Res 199:273–291

    Article  PubMed  CAS  Google Scholar 

  • Mihara M, Erster S, Zaika A et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590

    Article  PubMed  CAS  Google Scholar 

  • Moser C, Schmidbauer C, Gürtler U et al (2002) Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress Chaperon 7(4):365–373

    Article  CAS  Google Scholar 

  • Müller M, Wilder S, Bannasch D et al (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    Article  PubMed  Google Scholar 

  • Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 6:576–585

    Article  Google Scholar 

  • Multhoff G (2007) Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43(3):229–237

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M et al (1995) A stress-inducible 72 kDa heat shock protein (Hsp72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158(9):4341–4350

    PubMed  CAS  Google Scholar 

  • Multhoff G, Mizzen L, Winchester CC et al (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27(11):1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M et al (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperon 6(4):337–344

    Article  CAS  Google Scholar 

  • Nanbu K, Konishi I, Mandai M, Kuroda H, Hamid AA, Komatsu T, Mori T (1998) Prognostic significance of heat shock proteins Hsp70 and Hsp90 in endometrial carcinomas. Cancer Detect Prev 22:549–555

    Article  PubMed  CAS  Google Scholar 

  • Nihei T, Sato N, Takahashi S et al (1993) Demonstration of selective protein complexes of p53 with 73 kDa heat shock cognate protein, but not with 72 kDa heat shock protein in human tumor cells. Cancer Lett 73:181–189

    Article  PubMed  CAS  Google Scholar 

  • Nilsson JA, Cleveland JL (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22(56):9007–9021

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Brand K, Jäättelä M (2000a) Heat shock protein 70 is required for the survival of cancer cells. Ann NY Acad Sci 926:122–125

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jäättelä M (2000b) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97:7871–7876

    Article  PubMed  CAS  Google Scholar 

  • Olsen CL, Gardie B, Yaswen P, Stampfer MR (2002) Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21:6328–6339

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20(3):446–456

    Article  PubMed  CAS  Google Scholar 

  • Peeper DS, Dannenberg JH, Douma S, te Riele H, Bernards R (2001) Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nat Cell Biol 3(2):198–203

    Article  PubMed  CAS  Google Scholar 

  • Pelengaris S, Rudolph B, Littlewood T (2000) Action of Myc in vivo-proliferation and apoptosis. Opin Gen Dev 10:100–105

    Article  CAS  Google Scholar 

  • Perez-Sala D, Rebollo A (1999) Novel aspects of Ras proteins biology: regulation and implications. Cell Death Diff 6:722–728

    Article  CAS  Google Scholar 

  • Pfister K, Radons J, Busch R et al (2007) Patient survival by Hsp70 membrane phenotype: association with different routes of metastasis. Cancer 110(4):926–935

    Article  PubMed  Google Scholar 

  • Prendergast GC (1999) Mechanism of apoptosis by Myc. Oncogene 18:2967–2987

    Article  PubMed  CAS  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3(9):839–843

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  • Romanucci M, Bastow T, Della Salda L (2008) Heat shock proteins in animal neoplasms and human tumours–a comparison. Cell Stress Chaperon 13(3):253–262

    Google Scholar 

  • Ruchalski K, Mao H, Li Z et al (2006) Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281:7873–7880

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2(8):476–483

    Article  PubMed  CAS  Google Scholar 

  • Santarosa M, Favaro D, Quaia M, Galligioni E (1997) Expression of heat shockprote in 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 33:873–877

    Article  PubMed  CAS  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussion in cancer therapy. Leuco Biol 81:15–27

    Article  CAS  Google Scholar 

  • Schwabe M, Lubbert M (2007) Epigenetic lesions in malignant melanoma. Curr Pharm Biotechnol 8:382–387

    Article  PubMed  CAS  Google Scholar 

  • Sebastian T, Johnson PF (2006) Stop and go: antiproliferative and mitogenic functions of the transcription factor C/EBP. Cell Cycle 5:953–957

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Park YM, Kim JI et al (1996) T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem Biophys Res Comm 218:582–587

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  PubMed  CAS  Google Scholar 

  • Sherman M (2010) Major heat shock protein Hsp72 controls oncogene-induced senescence. Ann N Y Acad Sci 1197:152–157

    Article  PubMed  CAS  Google Scholar 

  • Shin BK, Wang H, Yim AM et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  • Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8(6):657–665

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280(46):38729–38739

    Article  PubMed  CAS  Google Scholar 

  • Steel R, Doherty JP, Buzzard K et al (2004) Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279(49):51490–51499

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Ouyang YB, Xu L et al (2006) The carboxyl-terminal. domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab 26(7):937–950

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Khaleque MA, Jones EL et al (2005) Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperon 10(1):46–58

    Article  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K (2004) HSP70 and HSP90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32(Pt 4):636–639

    Article  PubMed  CAS  Google Scholar 

  • Trieb K, Lechleitner T, Lang S, Windhager R, Kotz R, Dirnhofer S (1998) Heat-shock protein 72 expression in osteosarcomas correlates with good response to neoadjuvant chemotherapy. Hum Pathol 29:1050–1055

    Article  PubMed  CAS  Google Scholar 

  • Trost TM, Lausch EU, Fees SA et al (2005) Premature senescence is a primary fail-safe mechanism of ERBB2-driven tumorigenesis in breast carcinoma cells. Cancer Res 65:840–849

    PubMed  CAS  Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y (2003) Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab 23(6):718–727

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Roig LM, Fanelli MA et al (1997) Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 21:441–451

    PubMed  CAS  Google Scholar 

  • Vaseva AV, Moll UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787(5):414–420

    Article  PubMed  CAS  Google Scholar 

  • Vega VL, Rodríguez-Silva M, Frey T et al (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180(6):4299–4307

    PubMed  CAS  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperon 9(2):122–133

    Article  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9:138–141

    Article  PubMed  CAS  Google Scholar 

  • Volloch VZ, Sherman (1999) Oncogenic potential of Hsp72. Oncogene 18:3648–3651

    Article  PubMed  CAS  Google Scholar 

  • Wei YQ, Zhao X, Kariya Y, Teshigawara K, Uchida A (1995) Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (Hsp) 70 expression in tumor cells. Cancer Immunol Immunother 40:73–77

    Article  PubMed  CAS  Google Scholar 

  • White E (1998) Regulation of apoptosis by adenovirus E1A and E1B oncogenes. Semin Virol 8:505–513

    Article  CAS  Google Scholar 

  • Wright WE, Shay JW (2001) Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr Opin Genet Dev 11:98–103

    Article  PubMed  CAS  Google Scholar 

  • Wu GS, Burns TF, McDonald ER 3rd et al (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17:141–143

    Article  PubMed  CAS  Google Scholar 

  • Yaswen P, Campisi J (2007) Oncogene-induced senescence pathways weave an intricate tapestry. Cell 128:233–234

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Ravera CP, Chen YN, McMahon G (1997) Regulation of Myc-dependent apoptosis by P53, C-Jun N-terminal. kinases stress-activated protein kinases, and Mdm-2. Cell Growth Diff 8:731–742

    PubMed  CAS  Google Scholar 

  • Zeng Y, Chen X, Larmonier N et al (2006) Natural killer cells play a key role in the antitumor immunity generated by chaperone-rich cell lysate vaccination. Int J Cancer 119(11):2624–2631

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12(19):2997–3007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Malyshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Malyshev, I. (2013). HSP70 in Carcinogenesis. In: Immunity, Tumors and Aging: The Role of HSP70. SpringerBriefs in Biochemistry and Molecular Biology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5943-5_6

Download citation

Publish with us

Policies and ethics