Skip to main content

The Functions of HSP70 in Normal Cells

  • Chapter
  • First Online:
Immunity, Tumors and Aging: The Role of HSP70

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM,volume 6))

Abstract

In normal cells, the HSP70 ATPase cycle performs several fundamental functions: (1) together with co-chaperones, HSP70 forms a protein folding mechanism and provides protein transportation into organelles; (2) assisted by HSP40, HSP70 recognizes irreversibly damaged proteins and, assisted by CHIP, Bag-1 and HSJ1 ubiquitinates these proteins, thereby targeting them for degradation via proteasomes; and (3) together with the co-chaperones HSP90, HSP40, Hip, Hop and Bag-1, HSP70 recognizes normal proteins containing the marker sequence KFPRQ and sends these proteins for degradation in lysosomes. Thus, the HSP70 ATPase cycle forms a protein quality control system or the FOlding Refolding Degradation machinery (FORD) and, depending on the state of the protein, sends the protein either for re-folding or for degradation. Because of the FORD machinery, a cell maintains protein homeostasis. The HSP70 ATPase cycle also controls the activity of key signalling proteins by maintaining these proteins in an inactive or active state by regulating their levels and by intracellular transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tau proteins stabilize microtubules in neurons of the central nervous system. When tau proteins are defective, they can result in Alzheimer's disease.

  2. 2.

    CFTR is an ion channel that transports chloride ions across epithelial cell membranes. Mutations of the CFTR gene affect functioning of the chloride ion channels, leading to cystic fibrosis.

References

  • Alberti S, Esser C, Höhfeld J (2003) BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperon 8(3):225–231

    Article  Google Scholar 

  • Alberti S, Böhse K, Arndt V et al (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(9):4003–4010

    Article  PubMed  CAS  Google Scholar 

  • Ancevska-Taneva N, Onoprishvili I, Andria ML et al (2006) A member of the heat shock protein 40 family, hlj1, binds to the carboxyl tail of the human mu opioid receptor. Brain Res 1081(1):28–33

    Article  PubMed  CAS  Google Scholar 

  • Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27(2):315–327

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Arndt V, Daniel C, Nastainczyk W et al (2005) BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 16(12):5891–5900

    Article  PubMed  CAS  Google Scholar 

  • Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545

    PubMed  CAS  Google Scholar 

  • Bercovich B, Stancovski I, Mayer A et al (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272(14):9002–9010

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    Article  PubMed  CAS  Google Scholar 

  • Chapple JP, Cheetham ME (2003) The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J Biol Chem 278(21):19087–19094

    Article  PubMed  CAS  Google Scholar 

  • Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246(4928):382–385

    Article  PubMed  CAS  Google Scholar 

  • Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA (2007) G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 59(3):225–250

    Article  PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang J et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96

    Article  PubMed  CAS  Google Scholar 

  • Cyr DM, Höhfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27(7):368–375

    Article  PubMed  CAS  Google Scholar 

  • Demand J, Lüders J, Höhfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18(4):2023–2028

    PubMed  CAS  Google Scholar 

  • Demand J, Alberti S, Patterson C, Höhfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11(20):1569–1577

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890

    Article  PubMed  CAS  Google Scholar 

  • Elliott E, Tsvetkov P, Ginzburg I (2007) BAG-1 associates with Hsc70. Tau complex and regulates the proteasomal degradation of Tau protein. J Biol Chem 282(51):37276–37284

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Alberti S, Höhfeld J (2004) Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695(1–3):171–188

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol. doi:10.1038/nsmb.1591

    PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Höhfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16(20):6209–6216

    Article  PubMed  Google Scholar 

  • Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248(1):30–43

    Article  PubMed  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y et al (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276(46):42938–42944

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    PubMed  CAS  Google Scholar 

  • Lanctôt PM, Leclerc PC, Escher E et al (2006) Role of N-glycan-dependent quality control in the cell-surface expression of the AT1 receptor. Biochem Biophys Res Commun 340(2):395–402

    Article  PubMed  Google Scholar 

  • Lee DH, Sherman MY, Goldberg AL (1996) Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol Cell Biol 16(9):4773–4781

    PubMed  CAS  Google Scholar 

  • Lüders J, Demand J, Höhfeld J (2006) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275(7):4613–4617

    Article  Google Scholar 

  • Luo W, Zhong J, Chang R et al (2010) Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 285(6):3651–3663

    Article  PubMed  CAS  Google Scholar 

  • Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2435–2444

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W et al (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105

    Article  PubMed  CAS  Google Scholar 

  • Molinari M, Galli C, Piccaluga V et al (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158(2):247–257

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus EM, Mashukova A, Zhang W et al (2006) A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chem Senses 31(5):445–452

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Brodsky JL, Nakatsukasa K (2005) Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 137(5):551–555

    Article  PubMed  CAS  Google Scholar 

  • Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228(2):111–133

    CAS  Google Scholar 

  • Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275(35):27447–27456

    PubMed  CAS  Google Scholar 

  • Sepp-Lorenzino L, Ma Z, Lebwohl DE et al (1995) Herbimycin A induces the 20 S proteasome- and ubiquitin-dependent degradation of receptor tyrosine kinases. J Biol Chem 270(28):16580–16587

    Article  PubMed  CAS  Google Scholar 

  • Westhoff B, Chapple JP, van der Spuy J et al (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15(11):1058–1064

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B et al (1994) Inhibition of heat shock protein HSP90-pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91(18):8324–8328

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Nijbroek G, Sullivan ML et al (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12(5):1303–1314

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Malyshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Malyshev, I. (2013). The Functions of HSP70 in Normal Cells. In: Immunity, Tumors and Aging: The Role of HSP70. SpringerBriefs in Biochemistry and Molecular Biology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5943-5_2

Download citation

Publish with us

Policies and ethics