Skip to main content

General and Regulatory Proteolysis in Bacillus subtilis

  • Chapter
  • First Online:
Regulated Proteolysis in Microorganisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 66))

Abstract

The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33(1):152–163

    Article  PubMed  CAS  Google Scholar 

  2. Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587

    Article  PubMed  CAS  Google Scholar 

  3. Jenal U, Hengge-Aronis R (2003) Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6(2):163–172

    Article  PubMed  CAS  Google Scholar 

  4. Kirstein J, Moliere N, Dougan DA, Turgay K (2009) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+  proteases. Nat Rev Microbiol 7(8):589–599

    Article  PubMed  CAS  Google Scholar 

  5. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  PubMed  CAS  Google Scholar 

  6. Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286(5446):1888–1893

    Article  PubMed  CAS  Google Scholar 

  7. Turgay K (2010) Role of proteolysis and chaperones in stress response and regulation. In: Storz G, Hengge R (eds) Bacterial stress responses, 2nd edn. ASM Press, American Society for Microbiology, Washington, DC, pp 75–90

    Google Scholar 

  8. Kress W, Maglica Z, Weber-Ban E (2009) Clp chaperone-proteases: structure and function. Res Microbiol 160(9):618–628

    Article  PubMed  CAS  Google Scholar 

  9. Sauer RT, Baker TA (2011) AAA+  proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    Article  PubMed  CAS  Google Scholar 

  10. Sauer RT, Bolon DN, Burton BM, Burton RE et al (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119(1):9–18

    Article  PubMed  CAS  Google Scholar 

  11. Derre I, Rapoport G, Devine K, Rose M et al (1999) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32(3):581–593

    Article  PubMed  CAS  Google Scholar 

  12. Derre I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31(1):117–131

    Article  PubMed  CAS  Google Scholar 

  13. Krüger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180(24):6681–6688

    PubMed  Google Scholar 

  14. Krüger E, Zühlke D, Witt E, Ludwig H et al (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20(4):852–863

    Article  PubMed  Google Scholar 

  15. Gerth U, Kirstein J, Mostertz J, Waldminghaus T et al (2004) Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 186(1):179–191

    Article  PubMed  CAS  Google Scholar 

  16. Miethke M, Hecker M, Gerth U (2006) Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188(13):4610–4619

    Article  PubMed  CAS  Google Scholar 

  17. Kock H, Gerth U, Hecker M (2004) The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol 186(17):5856–5864

    Article  PubMed  CAS  Google Scholar 

  18. Krüger E, Völker U, Hecker M (1994) Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J Bacteriol 176:3360–3367

    PubMed  Google Scholar 

  19. Krüger E, Witt E, Ohlmeier S, Hanschke R et al (2000) The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 182(11):3259–3265

    Article  PubMed  Google Scholar 

  20. Schlothauer T, Mogk A, Dougan DA, Bukau B et al (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proc Natl Acad Sci U S A 100(5):2306–2311

    Article  PubMed  CAS  Google Scholar 

  21. Kirstein J, Dougan DA, Gerth U, Hecker M et al (2007) The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J 26(8):2061–2070

    Article  PubMed  CAS  Google Scholar 

  22. Kirstein J, Schlothauer T, Dougan DA, Lilie H et al (2006) Adaptor protein controlled oligomerization activates the AAA+  protein ClpC. EMBO J 25(7):1481–1491

    Article  PubMed  CAS  Google Scholar 

  23. Wang F, Mei Z, Qi Y, Yan C et al (2011) Structure and mechanism of the hexameric MecA-ClpC molecular machine. Nature 471(7338):331–335

    Article  PubMed  CAS  Google Scholar 

  24. Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17(22):6730–6738

    Article  PubMed  CAS  Google Scholar 

  25. Persuh M, Mandic-Mulec I, Dubnau D (2002) A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J Bacteriol 184(8):2310–2313

    Article  PubMed  CAS  Google Scholar 

  26. Kock H, Gerth U, Hecker M (2004) MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol 51(4):1087–1102

    Article  PubMed  CAS  Google Scholar 

  27. Pan Q, Garsin DA, Losick R (2001) Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol Cell 8(4):873–883

    Article  PubMed  CAS  Google Scholar 

  28. Zuber P (2004) Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186(7):1911–1918

    Article  PubMed  CAS  Google Scholar 

  29. Zuber P (2009) Management of oxidative stress in Bacillus. Annu Rev Microbiol 63:575–597

    Article  PubMed  CAS  Google Scholar 

  30. Garg SK, Kommineni S, Henslee L, Zhang Y et al (2009) The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx. J Bacteriol 191(4):1268–1277

    Article  PubMed  CAS  Google Scholar 

  31. Kommineni S, Garg SK, Chan CM, Zuber P (2011) YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). J Bacteriol 193(9):2133–2140

    Article  PubMed  CAS  Google Scholar 

  32. Larsson JT, Rogstam A, von Wachenfeldt C (2007) YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis. Mol Microbiol 66(3):669–684

    Article  PubMed  CAS  Google Scholar 

  33. Wiegert T, Schumann W (2001) SsrA-mediated tagging in Bacillus subtilis. J Bacteriol 183(13):3885–3889

    Article  PubMed  CAS  Google Scholar 

  34. Duman RE, Lowe J (2010) Crystal structures of Bacillus subtilis Lon protease. J Mol Biol 401(4):653–670

    Article  PubMed  CAS  Google Scholar 

  35. Kang MS, Kim SR, Kwack P, Lim BK et al (2003) Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. EMBO J 22(12):2893–2902

    Article  PubMed  CAS  Google Scholar 

  36. Kang MS, Lim BK, Seong IS, Seol JH et al (2001) The ATP-dependent CodWX (HslVU) protease in Bacillus subtilis is an N-terminal serine protease. EMBO J 20(4):734–742

    Article  PubMed  CAS  Google Scholar 

  37. Bochtler M, Hartmann C, Song HK, Bourenkov GP et al (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403(6771):800–805

    Article  PubMed  CAS  Google Scholar 

  38. Sousa MC, Trame CB, Tsuruta H, Wilbanks SM et al (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103(4):633–643

    Article  PubMed  CAS  Google Scholar 

  39. Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231

    Article  PubMed  CAS  Google Scholar 

  40. Deuerling E, Mogk A, Richter C, Purucker M et al (1997) The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol Microbiol 23(5):921–933

    Article  PubMed  CAS  Google Scholar 

  41. Wolfe MS (2009) Intramembrane proteolysis. Chem Rev 109(4):1599–1612

    Article  PubMed  CAS  Google Scholar 

  42. Urban S (2009) Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat Rev Microbiol 7(6):411–423

    PubMed  CAS  Google Scholar 

  43. Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100(4):391–398

    Article  PubMed  CAS  Google Scholar 

  44. Heinrich J, Wiegert T (2009) Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res Microbiol 160(9):696–703

    Article  PubMed  CAS  Google Scholar 

  45. Rudner DZ, Losick R (2001) Morphological coupling in development: lessons from prokaryotes. Dev Cell 1(6):733–742

    Article  PubMed  CAS  Google Scholar 

  46. Kong L, Dubnau D (1994) Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc Natl Acad Sci U S A 91(13):5793–5797

    Article  PubMed  CAS  Google Scholar 

  47. Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11(1):119–128

    Article  PubMed  CAS  Google Scholar 

  48. Prepiak P, Dubnau D (2007) A peptide signal for adapter protein-mediated degradation by the AAA+  protease ClpCP. Mol Cell 26(5):639–647

    Article  PubMed  CAS  Google Scholar 

  49. Maamar H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56(3):615–624

    Article  PubMed  CAS  Google Scholar 

  50. Smits WK, Eschevins CC, Susanna KA, Bron S et al (2005) Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol Microbiol 56(3):604–614

    Article  PubMed  CAS  Google Scholar 

  51. Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61(3):564–572

    Article  PubMed  CAS  Google Scholar 

  52. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8(9):634–644

    Article  PubMed  CAS  Google Scholar 

  53. Caramori T, Barilla D, Nessi C, Sacchi L et al (1996) Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis. J Bacteriol 178(11):3113–3118

    PubMed  CAS  Google Scholar 

  54. Fredrick K, Helmann JD (1996) FlgM is a primary regulator of sigmaD activity, and its absence restores motility to a sinR mutant. J Bacteriol 178(23):7010–7013

    PubMed  CAS  Google Scholar 

  55. Sorenson MK, Ray SS, Darst SA (2004) Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation. Mol Cell 14(1):127–138

    Article  PubMed  CAS  Google Scholar 

  56. Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6(6):455–465

    Article  PubMed  CAS  Google Scholar 

  57. Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5(2):160–165

    Article  PubMed  CAS  Google Scholar 

  58. Msadek T, Dartois V, Kunst F, Herbaud ML et al (1998) ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27(5):899–914

    Article  PubMed  CAS  Google Scholar 

  59. Liu J, Zuber P (1998) A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol 180(16):4243–4251

    PubMed  CAS  Google Scholar 

  60. Rashid MH, Tamakoshi A, Sekiguchi J (1996) Effects of mecA and mecB (clpC) mutations on expression of sigD, which encodes an alternative sigma factor, and autolysin operons and on flagellin synthesis in Bacillus subtilis. J Bacteriol 178(16):4861–4869

    PubMed  CAS  Google Scholar 

  61. Ogura M, Tsukahara K (2010) Autoregulation of the Bacillus subtilis response regulator gene degU is coupled with the proteolysis of DegU-P by ClpCP. Mol Microbiol 75(5):1244–1259

    Article  PubMed  CAS  Google Scholar 

  62. Amati G, Bisicchia P, Galizzi A (2004) DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J Bacteriol 186(18):6003–6014

    Article  PubMed  CAS  Google Scholar 

  63. Verhamme DT, Kiley TB, Stanley-Wall NR (2007) DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 65(2):554–568

    Article  PubMed  CAS  Google Scholar 

  64. Kobayashi K (2007) Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66(2):395–409

    Article  PubMed  CAS  Google Scholar 

  65. Tsukahara K, Ogura M (2008) Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiol 8:8

    Article  PubMed  CAS  Google Scholar 

  66. Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52(2):357–369

    Article  PubMed  CAS  Google Scholar 

  67. Calvio C, Celandroni F, Ghelardi E, Amati G et al (2005) Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol 187(15):5356–5366

    Article  PubMed  CAS  Google Scholar 

  68. Hsueh YH, Cozy LM, Sham LT, Calvo RA et al (2011) DegU-phosphate activates expression of the anti-sigma factor FlgM in Bacillus subtilis. Mol Microbiol 81(4):1092–1108

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Y, Zuber P (2007) Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity. J Bacteriol 189(21):7669–7680

    Article  PubMed  CAS  Google Scholar 

  70. Leelakriangsak M, Kobayashi K, Zuber P (2007) Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis. J Bacteriol 189(5):1736–1744

    Article  PubMed  CAS  Google Scholar 

  71. Leelakriangsak M, Zuber P (2007) Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress. J Bacteriol 189(5):1727–1735

    Article  PubMed  CAS  Google Scholar 

  72. Petersohn A, Brigulla M, Haas S, Hoheisel JD et al (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183(19):5617–5631

    Article  PubMed  CAS  Google Scholar 

  73. Nakano S, Nakano MM, Zhang Y, Leelakriangsak M et al (2003) A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci U S A 100(7):4233–4238

    Article  PubMed  CAS  Google Scholar 

  74. Newberry KJ, Nakano S, Zuber P, Brennan RG (2005) Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci U S A 102(44):15839–15844

    Article  PubMed  CAS  Google Scholar 

  75. Nakano S, Kuster-Schock E, Grossman AD, Zuber P (2003) Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A 100(23):13603–13608

    Article  PubMed  CAS  Google Scholar 

  76. Reyes DY, Zuber P (2008) Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation. Mol Microbiol 69(3):765–779

    Article  PubMed  CAS  Google Scholar 

  77. Nakano MM, Lin A, Zuber CS, Newberry KJ et al (2010) Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS One 5(1):e8664

    Article  PubMed  CAS  Google Scholar 

  78. Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19(3):417–428

    Article  PubMed  CAS  Google Scholar 

  79. Mogk A, Homuth G, Scholz C, Kim L et al (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16(15):4579–4590

    Article  PubMed  CAS  Google Scholar 

  80. Hecker M, Pane-Farre J, Volker U (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236

    Article  PubMed  CAS  Google Scholar 

  81. Derre I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 38(2):335–347

    Article  PubMed  CAS  Google Scholar 

  82. Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L et al (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41(5):1159–1172

    Article  PubMed  CAS  Google Scholar 

  83. Darmon E, Noone D, Masson A, Bron S et al (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184(20):5661–5671

    Article  PubMed  CAS  Google Scholar 

  84. Kirstein J, Zuhlke D, Gerth U, Turgay K et al (2005) A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J 24(19):3435–3445

    Article  PubMed  CAS  Google Scholar 

  85. Fuhrmann J, Schmidt A, Spiess S, Lehner A et al (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324(5932):1323–1327

    Article  PubMed  CAS  Google Scholar 

  86. Elsholz AK, Hempel K, Michalik S, Gronau K et al (2011) Activity control of the ClpC adaptor McsB in Bacillus subtilis. J Bacteriol 193(15):3887–3893

    Article  PubMed  CAS  Google Scholar 

  87. Elsholz AK, Hempel K, Pother DC, Becher D et al (2011) CtsR inactivation during thiol-specific stress in low GC, Gram+  bacteria. Mol Microbiol 79(3):772–785

    Article  PubMed  CAS  Google Scholar 

  88. Elsholz AK, Michalik S, Zuhlke D, Hecker M et al (2010) CtsR, the Gram-positive master regulator of protein quality control, feels the heat. EMBO J 29(21):3621–3629

    Article  PubMed  CAS  Google Scholar 

  89. Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185(6):1967–1975

    Article  PubMed  CAS  Google Scholar 

  90. Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150(Pt 2):497–512

    Article  PubMed  CAS  Google Scholar 

  91. Schöbel S, Zellmeier S, Schumann W, Wiegert T (2004) The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52(4):1091–1105

    Article  PubMed  CAS  Google Scholar 

  92. Barchinger SE, Ades SE (2013) Regulated proteolysis: control of the Escherichia coli σE-dependent cell envelope stress response. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:129–160

    Google Scholar 

  93. Noone D, Howell A, Devine KM (2000) Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. J Bacteriol 182(6):1592–1599

    Article  PubMed  CAS  Google Scholar 

  94. Ellermeier CD, Losick R (2006) Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 20(14):1911–1922

    Article  PubMed  CAS  Google Scholar 

  95. Heinrich J, Wiegert T (2006) YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Mol Microbiol 62(2):566–579

    Article  PubMed  CAS  Google Scholar 

  96. Heinrich J, Hein K, Wiegert T (2009) Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Mol Microbiol 74(6):1412–1426

    Article  PubMed  CAS  Google Scholar 

  97. Zellmeier S, Schumann W, Wiegert T (2006) Involvement of Clp protease activity in modulating the Bacillus subtilis sigmaw stress response. Mol Microbiol 61(6):1569–1582

    Article  PubMed  CAS  Google Scholar 

  98. Heinrich J, Lunden T, Kontinen VP, Wiegert T (2008) The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. Microbiology 154(Pt 7):1989–1997

    Article  PubMed  CAS  Google Scholar 

  99. Bramkamp M, Weston L, Daniel RA, Errington J (2006) Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. Mol Microbiol 62(2):580–591

    Article  PubMed  CAS  Google Scholar 

  100. Wadenpohl I, Bramkamp M (2010) DivIC stabilizes FtsL against RasP cleavage. J Bacteriol 192(19):5260–5263

    Article  PubMed  CAS  Google Scholar 

  101. Saito A, Hizukuri Y, Matsuo E, Chiba S et al (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 108(33):13740–13745

    Article  PubMed  CAS  Google Scholar 

  102. Gerth U, Kruger E, Derre I, Msadek T et al (1998) Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28(4):787–802

    Article  PubMed  CAS  Google Scholar 

  103. Liu J, Cosby WM, Zuber P (1999) Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 33(2):415–428

    Article  PubMed  CAS  Google Scholar 

  104. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1(2):117–126

    Article  PubMed  CAS  Google Scholar 

  105. Le AT, Schumann W (2009) The Spo0E phosphatase of Bacillus subtilis is a substrate of the FtsH metalloprotease. Microbiology 155(Pt 4):1122–1132

    Article  PubMed  CAS  Google Scholar 

  106. Wehrl W, Niederweis M, Schumann W (2000) The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182(13):3870–3873

    Article  PubMed  CAS  Google Scholar 

  107. Cutting S, Anderson M, Lysenko E, Page A et al (1997) SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J Bacteriol 179(17):5534–5542

    PubMed  CAS  Google Scholar 

  108. Prajapati RS, Ogura T, Cutting SM (2000) Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim Biophys Acta 1475(3):353–359

    Article  PubMed  CAS  Google Scholar 

  109. Schmidt R, Decatur AL, Rather PN, Moran CP Jr et al (1994) Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J Bacteriol 176(21):6528–6537

    PubMed  CAS  Google Scholar 

  110. Serrano M, Hovel S, Moran CP Jr, Henriques AO et al (2001) Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 183(10):2995–3003

    Article  PubMed  CAS  Google Scholar 

  111. Simmons LA, Grossman AD, Walker GC (2008) Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J Bacteriol 190(20):6758–6768

    Article  PubMed  CAS  Google Scholar 

  112. Pan Q, Losick R (2003) Unique degradation signal for ClpCP in Bacillus subtilis. J Bacteriol 185(17):5275–5278

    Article  PubMed  CAS  Google Scholar 

  113. Dworkin J, Losick R (2001) Differential gene expression governed by chromosomal spatial asymmetry. Cell 107(3):339–346

    Article  PubMed  CAS  Google Scholar 

  114. Kain J, He GG, Losick R (2008) Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis. J Bacteriol 190(20):6749–6757

    Article  PubMed  CAS  Google Scholar 

  115. Liu J, Zuber P (2000) The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates sigma- dependent transcription. Mol Microbiol 37(4):885–897

    Article  PubMed  Google Scholar 

  116. Nakano MM, Hajarizadeh F, Zhu Y, Zuber P (2001) Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 42(2):383–394

    Article  PubMed  CAS  Google Scholar 

  117. Kobayashi K, Ogura M, Yamaguchi H, Yoshida K et al (2001) Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol 183(24):7365–7370

    Article  PubMed  CAS  Google Scholar 

  118. LaBell TL, Trempy JE, Haldenwang WG (1987) Sporulation-specific sigma factor sigma 29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc Natl Acad Sci U S A 84(7):1784–1788

    Article  PubMed  CAS  Google Scholar 

  119. Zhang B, Hofmeister A, Kroos L (1998) The prosequence of pro-sigmaK promotes membrane association and inhibits RNA polymerase core binding. J Bacteriol 180(9):2434–2441

    PubMed  CAS  Google Scholar 

  120. Cutting S, Oke V, Driks A, Losick R et al (1990) A forespore checkpoint for mother cell gene expression during development in B. subtilis. Cell 62(2):239–250

    Article  PubMed  CAS  Google Scholar 

  121. Fujita M, Losick R (2002) An investigation into the compartmentalization of the sporulation transcription factor sigmaE in Bacillus subtilis. Mol Microbiol 43(1):27–38

    Article  PubMed  CAS  Google Scholar 

  122. Ju J, Luo T, Haldenwang WG (1998) Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J Bacteriol 180(7):1673–1681

    PubMed  CAS  Google Scholar 

  123. Pogliano K, Hofmeister AE, Losick R (1997) Disappearance of the sigma E transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol 179(10):3331–3341

    PubMed  CAS  Google Scholar 

  124. Jonas RM, Weaver EA, Kenney TJ, Moran CP Jr et al (1988) The Bacillus subtilis spoIIG operon encodes both sigma E and a gene necessary for sigma E activation. J Bacteriol 170(2):507–511

    PubMed  CAS  Google Scholar 

  125. Peters HK 3rd, Haldenwang WG (1994) Isolation of a Bacillus subtilis spoIIGA allele that suppresses processing-negative mutations in the Pro-sigma E gene (sigE). J Bacteriol 176(24):7763–7766

    PubMed  CAS  Google Scholar 

  126. Stragier P, Bonamy C, Karmazyn-Campelli C (1988) Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52(5):697–704

    Article  PubMed  CAS  Google Scholar 

  127. Imamura D, Kuwana R, Kroos L, Feig M et al (2011) Substrate specificity of SpoIIGA, a signal-transducing aspartic protease in Bacilli. J Biochem 149(6):665–671

    Article  PubMed  CAS  Google Scholar 

  128. Imamura D, Zhou R, Feig M, Kroos L (2008) Evidence that the Bacillus subtilis SpoIIGA protein is a novel type of signal-transducing aspartic protease. J Biol Chem 283(22):15287–15299

    Article  PubMed  CAS  Google Scholar 

  129. Hofmeister AE, Londono-Vallejo A, Harry E, Stragier P et al (1995) Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83(2):219–226

    Article  PubMed  CAS  Google Scholar 

  130. Karow ML, Glaser P, Piggot PJ (1995) Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 92(6):2012–2016

    Article  PubMed  CAS  Google Scholar 

  131. Londono-Vallejo JA, Stragier P (1995) Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 9(4):503–508

    Article  PubMed  CAS  Google Scholar 

  132. Rudner DZ, Fawcett P, Losick R (1999) A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc Natl Acad Sci U S A 96(26):14765–14770

    Article  PubMed  CAS  Google Scholar 

  133. Yu YT, Kroos L (2000) Evidence that SpoIVFB is a novel type of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J Bacteriol 182(11):3305–3309

    Article  PubMed  CAS  Google Scholar 

  134. Rudner DZ, Losick R (2002) A sporulation membrane protein tethers the pro-sigmaK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev 16(8):1007–1018

    Article  PubMed  CAS  Google Scholar 

  135. Cutting S, Driks A, Schmidt R, Kunkel B et al (1991) Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sigma K processing in Bacillus subtilis. Genes Dev 5(3):456–466

    Article  PubMed  CAS  Google Scholar 

  136. Zhou R, Kroos L (2005) Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-sigmaK during Bacillus subtilis development. Mol Microbiol 58(3):835–846

    Article  PubMed  CAS  Google Scholar 

  137. Pan Q, Losick R, Rudner DZ (2003) A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 185(20):6051–6056

    Article  PubMed  CAS  Google Scholar 

  138. Campo N, Rudner DZ (2006) A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol Cell 23(1):25–35

    Article  PubMed  CAS  Google Scholar 

  139. Campo N, Rudner DZ (2007) SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 189(16):6021–6027

    Article  PubMed  CAS  Google Scholar 

  140. Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398

    Article  PubMed  CAS  Google Scholar 

  141. Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441(7091):300–302

    Article  PubMed  CAS  Google Scholar 

  142. Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42(5):1199–1209

    Article  PubMed  CAS  Google Scholar 

  143. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R et al (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98(20):11621–11626

    Article  PubMed  CAS  Google Scholar 

  144. Branda SS, Chu F, Kearns DB, Losick R et al (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59(4):1229–1238

    Article  PubMed  CAS  Google Scholar 

  145. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107(5):2230–2234

    Article  PubMed  CAS  Google Scholar 

  146. Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185(6):1951–1957

    Article  PubMed  CAS  Google Scholar 

  147. Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD et al (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186(12):3970–3979

    Article  PubMed  CAS  Google Scholar 

  148. Hamon MA, Stanley NR, Britton RA, Grossman AD et al (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52(3):847–860

    Article  PubMed  CAS  Google Scholar 

  149. Kearns DB, Chu F, Branda SS, Kolter R et al (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55(3):739–749

    Article  PubMed  CAS  Google Scholar 

  150. Chu F, Kearns DB, Branda SS, Kolter R et al (2006) Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59(4):1216–1228

    Article  PubMed  CAS  Google Scholar 

  151. Chu F, Kearns DB, McLoon A, Chai Y et al (2008) A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 68(5):1117–1127

    Article  PubMed  CAS  Google Scholar 

  152. Chai Y, Norman T, Kolter R, Losick R (2010) An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev 24(8):754–765

    Article  PubMed  CAS  Google Scholar 

  153. Kolodkin-Gal I, Romero D, Cao S, Clardy J et al (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629

    Article  PubMed  CAS  Google Scholar 

  154. Chai Y, Kolter R, Losick R (2010) Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol Microbiol 78(1):218–229

    PubMed  CAS  Google Scholar 

  155. Völker U, Engelmann S, Maul B, Riethdorf S et al (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140(Pt 4):741–752

    Article  PubMed  Google Scholar 

  156. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581

    Article  PubMed  CAS  Google Scholar 

  157. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  PubMed  CAS  Google Scholar 

  158. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82

    Article  PubMed  CAS  Google Scholar 

  159. Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T et al (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96(24):13732–13737

    Article  PubMed  CAS  Google Scholar 

  160. Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S et al (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18(24):6934–6949

    Article  PubMed  CAS  Google Scholar 

  161. Mogk A, Deuerling E, Vorderwulbecke S, Vierling E et al (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50(2):585–595

    Article  PubMed  CAS  Google Scholar 

  162. Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ et al (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278(33):31033–31042

    Article  PubMed  CAS  Google Scholar 

  163. Weibezahn J, Tessarz P, Schlieker C, Zahn R et al (2004) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119(5):653–665

    Article  PubMed  CAS  Google Scholar 

  164. Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34(2):641–646

    Article  PubMed  CAS  Google Scholar 

  165. Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4(12A):2202–2209

    Article  PubMed  CAS  Google Scholar 

  166. Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842

    Article  PubMed  CAS  Google Scholar 

  167. Liberek K, Galitski TP, Zylicz M, Georgopoulos C (1992) The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc Natl Acad Sci U S A 89(8):3516–3520

    Article  PubMed  CAS  Google Scholar 

  168. Gamer J, Multhaupt G, Tomoyasu T, McCarty JS et al (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J 15:607–617

    PubMed  CAS  Google Scholar 

  169. Rodriguez F, Arsene-Ploetze F, Rist W, Rudiger S et al (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32(3):347–358

    Article  PubMed  CAS  Google Scholar 

  170. Jürgen B, Hanschke R, Sarvas M, Hecker M et al (2001) Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol 55(3):326–332

    Article  PubMed  Google Scholar 

  171. Kirstein J, Strahl H, Moliere N, Hamoen LW et al (2008) Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol Microbiol 70(3):682–694

    Article  PubMed  CAS  Google Scholar 

  172. Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76:101–124

    Article  PubMed  CAS  Google Scholar 

  173. Keiler KC, Waller PR, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271(5251):990–993

    Article  PubMed  CAS  Google Scholar 

  174. Gur E, Ottofuelling R, Dougan DA (2012) Machines of destruction – AAA+  proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Dordrecht, pp xxx–xxx

    Google Scholar 

  175. Fujihara A, Tomatsu H, Inagaki S, Tadaki T et al (2002) Detection of tmRNA-mediated trans-translation products in Bacillus subtilis. Genes Cells 7(3):343–350

    Article  PubMed  CAS  Google Scholar 

  176. Muto A, Fujihara A, Ito KI, Matsuno J et al (2000) Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells 5(8):627–635

    Article  PubMed  CAS  Google Scholar 

  177. Shin JH, Price CW (2007) The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol 189(10):3729–3737

    Article  PubMed  CAS  Google Scholar 

  178. Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087

    Article  PubMed  CAS  Google Scholar 

  179. Lee BG, Park EY, Lee KE, Jeon H et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17(4):471–478

    Article  PubMed  CAS  Google Scholar 

  180. Kirstein J, Hoffmann A, Lilie H, Schmidt R et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49

    Article  PubMed  CAS  Google Scholar 

  181. Sass P, Josten M, Famulla K, Schiffer G et al (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108(42):17474–17479

    Article  PubMed  CAS  Google Scholar 

  182. Bottcher T, Sieber SA (2008) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130(44):14400–14401

    Article  PubMed  CAS  Google Scholar 

  183. Rathore S, Sinha D, Asad M, Bottcher T et al (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77(4):873–890

    Google Scholar 

  184. Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S et al (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50(26):5889–5891

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in the Laboratory of KT is supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Molière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Molière, N., Turgay, K. (2013). General and Regulatory Proteolysis in Bacillus subtilis . In: Dougan, D. (eds) Regulated Proteolysis in Microorganisms. Subcellular Biochemistry, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5940-4_4

Download citation

Publish with us

Policies and ethics