Skip to main content

Expression Profiling of Hepatocellular Carcinoma

  • Chapter
  • First Online:
Book cover Cancer Genomics

Abstract

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world.

The molecular mechanism of HCC onset involves a complex interplay of both genetic and epigenetic factors. Hepatic carcinogenesis is characterized by an increase in allelic losses, chromosomal aberrations, gene mutations, epigenetic alterations, changes of gene expression and alterations in molecular cellular pathways. The integration of genetic, epigenetic, genomic, and proteomic data provides insight into the molecular mechanisms underlying hepatocarcinogenesis and is revealing promising clinical approaches. Resulting findings offer the possibility for the identification of relevant biomarkers, useful for the detection, molecular diagnosis, prediction of recurrence and prognosis of HCC as well as for the improved identification of novel therapeutic targets. This will be of utmost importance in the near future as more and more new targeted drugs will become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576. doi: S0016-5085(07)00799-8[pii]10.1053/j.gastro.2007.04.061

    Article  PubMed  CAS  Google Scholar 

  2. Llovet JM, Brú C, Bruix J (1999) Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 19(3):329–338. doi: 10.1055/s-2007-1007122

    Article  PubMed  CAS  Google Scholar 

  3. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM (2007) Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27(1):55–76. doi: 10.1055/s-2006-960171

    Article  PubMed  CAS  Google Scholar 

  4. Kaposi-Novak P, Lee JS, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS (2006) Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 116(6):1582–1595. doi: 10.1172/JCI27236

    Article  PubMed  CAS  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, Group SIS (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390. doi: 359/4/378[pii]10.1056/NEJMoa0708857

    Article  PubMed  CAS  Google Scholar 

  6. Finn RS (2010) Development of molecularly targeted therapies in hepatocellular carcinoma: where do we go now? Clin Cancer Res 16(2):390–397. doi: 1078-0432.CCR-09-2084[pii]10.1158/1078-0432.CCR-09-2084

    Article  PubMed  CAS  Google Scholar 

  7. Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, LeBlanc AC, Donovan DJ, Thung SN, Solé M, Tovar V, Alsinet C, Ramos AH, Barretina J, Roayaie S, Schwartz M, Waxman S, Bruix J, Mazzaferro V, Ligon AH, Najfeld V, Friedman SL, Sellers WR, Meyerson M, Llovet JM (2008) Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68(16):6779–6788. doi: 68/16/6779[pii]10.1158/0008-5472.CAN-08-0742

    Article  PubMed  CAS  Google Scholar 

  8. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, Villanueva A, Newell P, Ikeda K, Hashimoto M, Watanabe G, Gabriel S, Friedman SL, Kumada H, Llovet JM, Golub TR (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69(18):7385–7392. doi: 0008-5472.CAN-09-1089[pii]10.1158/0008-5472.CAN-09-1089

    Article  PubMed  CAS  Google Scholar 

  9. Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, Durnez A, Demetris AJ, Thorgeirsson SS (2004) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40(3):667–676. doi: 10.1002/hep.20375

    Article  PubMed  CAS  Google Scholar 

  10. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12(4):410–416. doi: nm1377[pii]10.1038/nm1377

    Article  PubMed  CAS  Google Scholar 

  11. Breuhahn K, Vreden S, Haddad R, Beckebaum S, Stippel D, Flemming P, Nussbaum T, Caselmann WH, Haab BB, Schirmacher P (2004) Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor II overexpression. Cancer Res 64(17):6058–6064. doi: 64/17/6058[pii]10.1158/0008-5472.CAN-04-0292

    Article  PubMed  CAS  Google Scholar 

  12. Boyault S, Rickman DS, de Reyniès A, Balabaud C, Rebouissou S, Jeannot E, Hérault A, Saric J, Belghiti J, Franco D, Bioulac-Sage P, Laurent-Puig P, Zucman-Rossi J (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45(1):42–52. doi: 10.1002/hep.21467

    Article  PubMed  CAS  Google Scholar 

  13. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, Tang ZY, Wang XW (2008) EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68(5):1451–1461. doi: 68/5/1451[pii]10.1158/0008-5472.CAN-07-6013

    Article  PubMed  CAS  Google Scholar 

  14. Yang JD, Nakamura I, Roberts LR (2011) The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 21(1):35–43. doi: S1044-579X(10)00091-X[pii]10.1016/j.semcancer.2010.10.007

    Article  PubMed  CAS  Google Scholar 

  15. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132(7):2328–2339. doi: S0016-5085(07)00628-2[pii]10.1053/j.gastro.2007.03.102

    Article  PubMed  Google Scholar 

  16. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13(3):902–911. doi: 13/3/902[pii]10.1158/1078-0432.CCR-06-2363

    Article  PubMed  CAS  Google Scholar 

  17. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593. doi: 25/18/2586[pii]10.1200/JCO.2006.09.4565

    Article  PubMed  Google Scholar 

  18. Chew V, Tow C, Teo M, Wong HL, Chan J, Gehring A, Loh M, Bolze A, Quek R, Lee VK, Lee KH, Abastado JP, Toh HC, Nardin A (2010) Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 52(3):370–379. doi: S0168-8278(09)00475-9[pii]10.1016/j.jhep.2009.07.013

    Article  PubMed  CAS  Google Scholar 

  19. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800. doi: nm730[pii]10.1038/nm730

    PubMed  CAS  Google Scholar 

  20. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, Xu Y, Fan J (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979. doi: 15/3/971[pii]10.1158/1078-0432.CCR-08-1608

    Article  PubMed  CAS  Google Scholar 

  21. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337. doi: jem.20082173[pii]10.1084/jem.20082173

    Article  PubMed  CAS  Google Scholar 

  22. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, Yang YP, Tien P, Wang FS (2011) PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 128(4):887–896. doi: 10.1002/ijc.25397

    Article  PubMed  CAS  Google Scholar 

  23. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY, Wang XW (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10(2):99–111. doi: S1535-6108(06)00214-5[pii]10.1016/j.ccr.2006.06.016

    Article  PubMed  CAS  Google Scholar 

  24. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359(19):1995–2004. doi: NEJMoa0804525[pii]10.1056/NEJMoa0804525

    Article  PubMed  CAS  Google Scholar 

  25. Sherman M (2008) Recurrence of hepatocellular carcinoma. N Engl J Med 359(19):2045–2047. doi: NEJMe0807581[pii]10.1056/NEJMe0807581

    Article  PubMed  CAS  Google Scholar 

  26. Tsuchiya M, Parker JS, Kono H, Matsuda M, Fujii H, Rusyn I (2010) Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma. Mol Cancer 9:74. doi: 1476-4598-9-74[pii]10.1186/1476-4598-9-74

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka S, Mogushi K, Yasen M, Ban D, Noguchi N, Irie T, Kudo A, Nakamura N, Tanaka H, Yamamoto M, Kokudo N, Takayama T, Kawasaki S, Sakamoto M, Arii S (2011) Oxidative stress pathways in noncancerous human liver tissue to predict hepatocellular carcinoma recurrence: a prospective, multicenter study. Hepatology 54(4):1273–1281. doi: 10.1002/hep.24536

    Article  PubMed  CAS  Google Scholar 

  28. Hoshida Y, Toffanin S, Lachenmayer A, Villanueva A, Minguez B, Llovet JM (2010) Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 30(1):35–51. doi: 10.1055/s-0030-1247131

    Article  PubMed  CAS  Google Scholar 

  29. Villanueva A, Hoshida Y, Battiston C, Tovar V, Sia D, Alsinet C, Cornella H, Liberzon A, Kobayashi M, Kumada H, Thung SN, Bruix J, Newell P, April C, Fan JB, Roayaie S, Mazzaferro V, Schwartz ME, Llovet JM (2011) Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 140(5):1501–1512. doi: S0016-5085(11)00142-9[pii]10.1053/j.gastro.2011.02.006, e1502

    Article  PubMed  CAS  Google Scholar 

  30. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  PubMed  CAS  Google Scholar 

  31. Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339–346. doi: ng0802-339[pii]10.1038/ng0802-339

    Article  PubMed  CAS  Google Scholar 

  32. Homayounfar K, Gunawan B, Cameron S, Haller F, Baumhoer D, Uecker S, Sander B, Ramadori G, Lorf T, Füzesi L (2009) Pattern of chromosomal aberrations in primary liver cancers identified by comparative genomic hybridization. Hum Pathol 40(6):834–842. doi: S0046-8177(08)00560-1[pii]10.1016/j.humpath.2008.11.005

    Article  PubMed  CAS  Google Scholar 

  33. Moinzadeh P, Breuhahn K, Stützer H, Schirmacher P (2005) Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis. Br J Cancer 92(5):935–941. doi: 6602448[pii]10.1038/sj.bjc.6602448

    Article  PubMed  CAS  Google Scholar 

  34. Poon TC, Wong N, Lai PB, Rattray M, Johnson PJ, Sung JJ (2006) A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data. Gastroenterology 131(4):1262–1270. doi: S0016-5085(06)01753-7[pii]10.1053/j.gastro.2006.08.014

    Article  PubMed  CAS  Google Scholar 

  35. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120(7):1763–1773. doi: S0016508501008228[pii]

    Article  PubMed  CAS  Google Scholar 

  36. Nagai H, Pineau P, Tiollais P, Buendia MA, Dejean A (1997) Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene 14(24):2927–2933. doi: 10.1038/sj.onc.1201136

    Article  PubMed  CAS  Google Scholar 

  37. Wong CM, Fan ST (2001) Ng, I.O.: beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92(1):136–145. doi:10.1002/1097-0142(20010701)92:1<136::AID-CNCR1301>3.0.CO;2-R [pii]

    Article  PubMed  CAS  Google Scholar 

  38. Schlaeger C, Longerich T, Schiller C, Bewerunge P, Mehrabi A, Toedt G, Kleeff J, Ehemann V, Eils R, Lichter P, Schirmacher P, Radlwimmer B (2008) Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 47(2):511–520. doi: 10.1002/hep.22033

    Article  PubMed  CAS  Google Scholar 

  39. Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P, Kanai Y, Kosuge T, Fukayama M, Kondo T, Sakamoto M, Hosoda F, Ohki M, Imoto I, Inazawa J, Hirohashi S (2005) Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 43(5):863–874. doi: S0168-8278(05)00415-0[pii]10.1016/j.jhep.2005.05.033

    Article  PubMed  CAS  Google Scholar 

  40. Bressac B, Kew M, Wands J, Ozturk M (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350(6317):429–431. doi: 10.1038/350429a0

    Article  PubMed  CAS  Google Scholar 

  41. Clifford RJ, Zhang J, Meerzaman DM, Lyu MS, Hu Y, Cultraro CM, Finney RP, Kelley JM, Efroni S, Greenblum SI, Nguyen CV, Rowe WL, Sharma S, Wu G, Yan C, Zhang H, Chung YH, Kim JA, Park NH, Song IH, Buetow KH (2010) Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 52(6):2034–2043. doi: 10.1002/hep.23943

    Article  PubMed  CAS  Google Scholar 

  42. Zhang H, Zhai Y, Hu Z, Wu C, Qian J, Jia W, Ma F, Huang W, Yu L, Yue W, Wang Z, Li P, Zhang Y, Liang R, Wei Z, Cui Y, Xie W, Cai M, Yu X, Yuan Y, Xia X, Zhang X, Yang H, Qiu W, Yang J, Gong F, Chen M, Shen H, Lin D, Zeng YX, He F, Zhou G (2010) Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet 42(9):755–758. doi: ng.638[pii]10.1038/ng.638

    Article  PubMed  CAS  Google Scholar 

  43. Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, Otsuka M, Tateishi R, Omata M, Nakagawa H, Koike K, Kamatani N, Kubo M, Nakamura Y, Matsuda K (2011) Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet 43(5):455–458. doi: ng.809[pii]10.1038/ng.809

    Article  PubMed  CAS  Google Scholar 

  44. Miki D, Ochi H, Hayes CN, Abe H, Yoshima T, Aikata H, Ikeda K, Kumada H, Toyota J, Morizono T, Tsunoda T, Kubo M, Nakamura Y, Kamatani N, Chayama K (2011) Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet 43(8):797–800. doi: ng.876[pii]10.1038/ng.876

    Article  PubMed  CAS  Google Scholar 

  45. Villanueva A, Forns X, Llovet JM (2012) Molecular epidemiology in HCV-related hepatocellular carcinoma: first steps. J Hepatol. doi: S0168-8278(12)3-3[pii]10.1016/j.jhep.2012.01.002

    Google Scholar 

  46. Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J 174(3):341–348. doi: 174/3/341[pii]10.1503/cmaj.050774

    Article  Google Scholar 

  47. Ducasse M, Brown MA (2006) Epigenetic aberrations and cancer. Mol Cancer 5:60. doi: 1476-4598-5-60[pii]10.1186/1476-4598-5-60

    Article  PubMed  CAS  Google Scholar 

  48. Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity (Edinb) 105(1):4–13. doi: hdy201054[pii]10.1038/hdy.2010.54

    Article  CAS  Google Scholar 

  49. Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55. doi: S0959-437X(12)00019-6[pii]10.1016/j.gde.2012.02.008

    Article  PubMed  CAS  Google Scholar 

  50. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36. doi: bgp220[pii]10.1093/carcin/bgp220

    Article  PubMed  CAS  Google Scholar 

  51. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi: S0092867404000455[pii]

    Article  PubMed  CAS  Google Scholar 

  52. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi: S0092-8674(09)00008-7[pii]10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  53. Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18(1):113–121. doi: BPA121[pii]10.1111/j.1750-3639.2007.00121.x

    Article  PubMed  CAS  Google Scholar 

  54. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi: nature02871[pii]10.1038/nature02871

    Article  PubMed  CAS  Google Scholar 

  55. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi: nrg1379[pii]10.1038/nrg1379

    Article  PubMed  CAS  Google Scholar 

  56. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi: nrc1997[pii]10.1038/nrc1997

    Article  PubMed  CAS  Google Scholar 

  57. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi: nature03702[pii]10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  58. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545. doi: 1209283[pii]10.1038/sj.onc.1209283

    Article  PubMed  CAS  Google Scholar 

  59. Braconi C, Patel T (2008) MicroRNA expression profiling: a molecular tool for defining the phenotype of hepatocellular tumors. Hepatology 47(6):1807–1809. doi: 10.1002/hep.22326

    Article  PubMed  CAS  Google Scholar 

  60. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47(3):897–907. doi: 10.1002/hep.22160

    Article  PubMed  CAS  Google Scholar 

  61. Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47(6):1955–1963. doi: 10.1002/hep.22256

    Article  PubMed  CAS  Google Scholar 

  62. Li W, Xie L, He X, Li J, Tu K, Wei L, Wu J, Guo Y, Ma X, Zhang P, Pan Z, Hu X, Zhao Y, Xie H, Jiang G, Chen T, Wang J, Zheng S, Cheng J, Wan D, Yang S, Li Y, Gu J (2008) Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer 123(7):1616–1622. doi: 10.1002/ijc.23693

    Article  PubMed  CAS  Google Scholar 

  63. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, Wong N (2008) MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 135(1):257–269. doi: S0016-5085(08)00628-8[pii]10.1053/j.gastro.2008.04.003

    Article  PubMed  CAS  Google Scholar 

  64. Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, Roberts LR, Schmittgen TD (2008) Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 14(2):419–427. doi: 14/2/419[pii]10.1158/1078-0432.CCR-07-0523

    Article  PubMed  CAS  Google Scholar 

  65. Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E, Li KB, Ooi LL, Tan P, Lee CG (2008) Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 283(19):13205–13215. doi: M707629200[pii]10.1074/jbc.M707629200

    Article  PubMed  CAS  Google Scholar 

  66. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi: nrc1840[pii]10.1038/nrc1840

    Article  PubMed  CAS  Google Scholar 

  67. Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136(4):586–591. doi: S0092-8674(09)00141-X[pii]10.1016/j.cell.2009.02.005

    Article  PubMed  CAS  Google Scholar 

  68. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529. doi: 242606799[pii]10.1073/pnas.242606799

    Article  PubMed  CAS  Google Scholar 

  69. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004. doi: 0307323101[pii]10.1073/pnas.0307323101

    Article  PubMed  CAS  Google Scholar 

  70. Mott JL (2009) MicroRNAs involved in tumor suppressor and oncogene pathways: implications for hepatobiliary neoplasia. Hepatology 50(2):630–637. doi: 10.1002/hep.23010

    Article  PubMed  CAS  Google Scholar 

  71. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658. doi: S0016-5085(07)01002-5[pii]10.1053/j.gastro.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  72. Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M (2009) MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 15(16):5073–5081. doi: 1078-0432.CCR-09-0092[pii]10.1158/1078-0432.CCR-09-0092

    Article  PubMed  CAS  Google Scholar 

  73. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, Negrini M (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661. doi: onc2008178[pii]10.1038/onc.2008.178

    Article  PubMed  CAS  Google Scholar 

  74. Tannapfel A, Grund D, Katalinic A, Uhlmann D, Köckerling F, Haugwitz U, Wasner M, Hauss J, Engeland K, Wittekind C (2000) Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer 89(4):350–355. doi:10.1002/1097-0215(20000720)89:4<350::AID-IJC6>3.0.CO;2-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  75. Ito Y, Takeda T, Sakon M, Tsujimoto M, Monden M, Matsuura N (2001) Expression of p57/Kip2 protein in hepatocellular carcinoma. Oncology 61(3):221–225. doi: 55378[pii]

    Article  PubMed  CAS  Google Scholar 

  76. Nakai S, Masaki T, Shiratori Y, Ohgi T, Morishita A, Kurokohchi K, Watanabe S, Kuriyama S (2002) Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival. Int J Oncol 20(4):769–775

    PubMed  CAS  Google Scholar 

  77. Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, Chen DS, Chen PJ (2009) MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 136(2):683–693. doi: S0016-5085(08)01864-7[pii]10.1053/j.gastro.2008.10.029

    Article  PubMed  CAS  Google Scholar 

  78. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67(13):6092–6099. doi: 67/13/6092[pii]10.1158/0008-5472.CAN-06-4607

    Article  PubMed  CAS  Google Scholar 

  79. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL (2008) miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375(3):315–320. doi: S-291X(08)01485-X[pii]10.1016/j.bbrc.2008.07.154

    Article  PubMed  CAS  Google Scholar 

  80. Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284(46):32015–32027. doi: M109.016774[pii]10.1074/jbc.M109.016774

    Article  PubMed  CAS  Google Scholar 

  81. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD, Tsou AP (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49(5):1571–1582. doi: 10.1002/hep.22806

    Article  PubMed  CAS  Google Scholar 

  82. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361(15):1437–1447. doi: 361/15/1437[pii]10.1056/NEJMoa0901282

    Article  PubMed  CAS  Google Scholar 

  83. Mazzaferro V, Romito R, Schiavo M, Mariani L, Camerini T, Bhoori S, Capussotti L, Calise F, Pellicci R, Belli G, Tagger A, Colombo M, Bonino F, Majno P, Llovet JM, Force HIT (2006) Prevention of hepatocellular carcinoma recurrence with alpha-interferon after liver resection in HCV cirrhosis. Hepatology 44(6):1543–1554. doi: 10.1002/hep.21415

    Article  PubMed  CAS  Google Scholar 

  84. Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J, Sun Z, Wei L, Zheng X (2009) MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 49(4):1194–1202. doi: 10.1002/hep.22757

    Article  PubMed  CAS  Google Scholar 

  85. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69(3):1135–1142. doi: 0008-5472.CAN-08-2886[pii]10.1158/0008-5472.CAN-08-2886

    Article  PubMed  CAS  Google Scholar 

  86. Li D, Liu X, Lin L, Hou J, Li N, Wang C, Wang P, Zhang Q, Zhang P, Zhou W, Wang Z, Ding G, Zhuang SM, Zheng L, Tao W, Cao X (2011) MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem 286(42):36677–36685. doi: M111.270561[pii]10.1074/jbc.M111.270561

    Article  PubMed  CAS  Google Scholar 

  87. Chung GE, Yoon JH, Myung SJ, Lee JH, Lee SH, Lee SM, Kim SJ, Hwang SY, Lee HS, Kim CY (2010) High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep 23(1):113–119

    PubMed  CAS  Google Scholar 

  88. Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, Tang M, Hu CX (2008) Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol 23(1):87–94. doi: JGH5223[pii]10.1111/j.1440-1746.2007.05223.x

    Article  PubMed  CAS  Google Scholar 

  89. De Zhu J (2005) The altered DNA methylation pattern and its implications in liver cancer. Cell Res 15(4):272–280. doi: 10.1038/sj.cr.7290296

    Article  PubMed  CAS  Google Scholar 

  90. Zhu J (2006) DNA methylation and hepatocellular carcinoma. J Hepatobiliary Pancreat Surg 13(4):265–273. doi: 10.1007/s00534-005-1054-4

    Article  PubMed  Google Scholar 

  91. Tischoff I, Tannapfe A (2008) DNA methylation in hepatocellular carcinoma. World J Gastroenterol 14(11):1741–1748

    Article  PubMed  CAS  Google Scholar 

  92. Kanai Y, Hirohashi S (2007) Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 28(12):2434–2442. doi: bgm206[pii]10.1093/carcin/bgm206

    Article  PubMed  CAS  Google Scholar 

  93. Arai E, Ushijima S, Gotoh M, Ojima H, Kosuge T, Hosoda F, Shibata T, Kondo T, Yokoi S, Imoto I, Inazawa J, Hirohashi S, Kanai Y (2009) Genome-wide DNA methylation profiles in liver tissue at the precancerous stage and in hepatocellular carcinoma. Int J Cancer 125(12):2854–2862. doi: 10.1002/ijc.24708

    Article  PubMed  CAS  Google Scholar 

  94. Lee HS, Kim BH, Cho NY, Yoo EJ, Choi M, Shin SH, Jang JJ, Suh KS, Kim YS, Kang GH (2009) Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res 15(3):812–820. doi: 15/3/812[pii]10.1158/1078-0432.CCR-08-0266

    Article  PubMed  CAS  Google Scholar 

  95. Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61(10):4238–4243

    PubMed  CAS  Google Scholar 

  96. Gao W, Kondo Y, Shen L, Shimizu Y, Sano T, Yamao K, Natsume A, Goto Y, Ito M, Murakami H, Osada H, Zhang J, Issa JP, Sekido Y (2008) Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. Carcinogenesis 29(10):1901–1910. doi: bgn170[pii]10.1093/carcin/bgn170

    Article  PubMed  CAS  Google Scholar 

  97. Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A (2008) Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology 47(3):908–918. doi: 10.1002/hep.22110

    Article  PubMed  CAS  Google Scholar 

  98. Rivenbark AG, Coleman WB (2007) The use of epigenetic biomarkers for preclinical detection of hepatocellular carcinoma: potential for noninvasive screening of high-risk populations. Clin Cancer Res 13(8):2309–2312. doi: 13/8/2309[pii]10.1158/1078-0432.CCR-07-0086

    Article  PubMed  CAS  Google Scholar 

  99. Yamada S, Nomoto S, Fujii T, Takeda S, Kanazumi N, Sugimoto H, Nakao A (2007) Frequent promoter methylation of M-cadherin in hepatocellular carcinoma is associated with poor prognosis. Anticancer Res 27(4B):2269–2274

    PubMed  CAS  Google Scholar 

  100. Yan Q, Zhang ZF, Chen XP, Gutmann DH, Xiong M, Xiao ZY, Huang ZY (2008) Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma. Int J Oncol 32(5):1057–1063

    PubMed  CAS  Google Scholar 

  101. Jung JK, Arora P, Pagano JS, Jang KL (2007) Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res 67(12):5771–5778. doi: 67/12/5771[pii]10.1158/0008-5472.CAN-07-0529

    Article  PubMed  CAS  Google Scholar 

  102. Yang B, Guo M, Herman JG, Clark DP (2003) Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol 163(3):1101–1107. doi: S0002-9440(10)63469-4[pii]10.1016/S0002-9440(10)63469-4

    Article  PubMed  CAS  Google Scholar 

  103. Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Factor VM, Thorgeirsson SS (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117(9):2713–2722. doi: 10.1172/JCI31457

    Article  PubMed  CAS  Google Scholar 

  104. Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H, Ishii H, Hirohashi S (2003) Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 105(4):527–532. doi: 10.1002/ijc.11127

    Article  PubMed  CAS  Google Scholar 

  105. Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, Park YN (2007) DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 20(1):65–73

    PubMed  CAS  Google Scholar 

  106. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304. doi: nrg2540[pii]10.1038/nrg2540

    Article  PubMed  CAS  Google Scholar 

  107. Zhang K, Dent SY (2005) Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem 96(6):1137–1148. doi: 10.1002/jcb.20615

    Article  PubMed  CAS  Google Scholar 

  108. Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41(16):2381–2402. doi: S0959-8049(05)00710-0[pii]10.1016/j.ejca.2005.08.010

    Article  PubMed  CAS  Google Scholar 

  109. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi: 358/11/1148[pii]10.1056/NEJMra072067

    Article  PubMed  CAS  Google Scholar 

  110. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681. doi: S0092-8674(07)00128-6[pii]10.1016/j.cell.2007.01.033

    Article  PubMed  CAS  Google Scholar 

  111. Kondo Y, Shen L, Suzuki S, Kurokawa T, Masuko K, Tanaka Y, Kato H, Mizuno Y, Yokoe M, Sugauchi F, Hirashima N, Orito E, Osada H, Ueda R, Guo Y, Chen X, Issa JP, Sekido Y (2007) Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 37(11):974–983. doi: HEP141[pii]10.1111/j.1872-034X.2007.00141.x

    Article  PubMed  CAS  Google Scholar 

  112. Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27(6):1180–1186. doi: bgi364[pii]10.1093/carcin/bgi364

    Article  PubMed  CAS  Google Scholar 

  113. Toh Y, Nicolson GL (2009) The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis 26(3):215–227. doi: 10.1007/s10585-008-9233-8

    Article  PubMed  CAS  Google Scholar 

  114. Lee H, Ryu SH, Hong SS, Seo DD, Min HJ, Jang MK, Kwon HJ, Yu E, Chung YH, Kim KW (2009) Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. J Gastroenterol Hepatol 24(8):1445–1450. doi: JGH5965[pii]10.1111/j.1440-1746.2009.05965.x

    Article  PubMed  Google Scholar 

  115. Hamatsu T, Rikimaru T, Yamashita Y, Aishima S, Tanaka S, Shirabe K, Shimada M, Toh Y, Sugimachi K (2003) The role of MTA1 gene expression in human hepatocellular carcinoma. Oncol Rep 10(3):599–604

    PubMed  CAS  Google Scholar 

  116. Moon WS, Chang K, Tarnawski AS (2004) Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-alpha. Hum Pathol 35(4):424–429. doi: S0046817703006713[pii]

    Article  PubMed  CAS  Google Scholar 

  117. Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, Lee MO (2008) Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene 27(24):3405–3413. doi: 1211000[pii]10.1038/sj.onc.1211000

    Article  PubMed  CAS  Google Scholar 

  118. Ryu SH, Chung YH, Lee H, Kim JA, Shin HD, Min HJ, Seo DD, Jang MK, Yu E, Kim KW (2008) Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology 47(3):929–936. doi: 10.1002/hep.22124

    Article  PubMed  Google Scholar 

  119. Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 24(24):2894–2900. doi: btn553[pii]10.1093/bioinformatics/btn553

    Article  PubMed  CAS  Google Scholar 

  120. Kim W, Oe Lim S, Kim JS, Ryu YH, Byeon JY, Kim HJ, Kim YI, Heo JS, Park YM, Jung G (2003) Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin Cancer Res 9(15):5493–5500

    PubMed  CAS  Google Scholar 

  121. Li C, Tan YX, Zhou H, Ding SJ, Li SJ, Ma DJ, Man XB, Hong Y, Zhang L, Li L, Xia QC, Wu JR, Wang HY, Zeng R (2005) Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: identification of potential tumor markers. Proteomics 5(4):1125–1139. doi: 10.1002/pmic.200401141

    Article  PubMed  CAS  Google Scholar 

  122. Li C, Ruan HQ, Liu YS, Xu MJ, Dai J, Sheng QH, Tan YX, Yao ZZ, Wang HY, Wu JR, Zeng R (2012) Quantitative proteomics reveal up-regulated protein expression of the SET complex associated with hepatocellular carcinoma. J Proteome Res 11(2):871–885. doi: 10.1021/pr2006999

    Article  PubMed  CAS  Google Scholar 

  123. Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, Jia HL, Ye QH, Qin LX, Tang ZY, He P, Hunter KW, Thorgeirsson SS, Meltzer PS, Wang XW (2011) Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology. doi: S0016-5085(11)01771-9[pii]10.1053/j.gastro.2011.12.039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Critelli, R.M., Cariani, E., Villa, E. (2013). Expression Profiling of Hepatocellular Carcinoma. In: Pfeffer, U. (eds) Cancer Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5842-1_6

Download citation

Publish with us

Policies and ethics