Skip to main content

Combating Oxidative/Nitrosative Stress with Electrophilic Counterattack Strategies

  • Chapter
  • First Online:

Abstract

Redox stress is thought to contribute to neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Cysteine-based redox regulation, via glutathione- and thioredoxin-mediated pathways, represents an acute defense system. Additionally, with prolonged oxidative stress, cells mount a ‘counterattack’ to activate transcription-dependent pathways, including the Keap1/Nrf2 and HSP90/HSF-1 pathways, which induce phase 2 enzymes and heat-shock proteins, respectively. Oxidative/nitrosative stress itself is an activator of the Keap1/Nrf2 pathway via cysteine thiol oxidation. Moreover, stress-induced oxidation of endogenous compounds can generate electrophiles, including active aldehydes, nitroso-compounds, fatty acids, nitro-guanosine, and quinone-based dopamine derivatives. These electrophilic compounds were considered toxic, but recently have been shown to be neuroprotective under certain conditions. These endogenously-produced electrophiles signal an “electrophilic counterattack,” binding to specific cysteines of Keap1 and HSP90 to activate these pathways. Finally, we describe novel pro-electrophilic drugs (PEDs) that are activated by the very oxidative/nitrosative stress that they subsequently counteract. One example is carnosic acid (CA), found in the herb rosemary. CA itself is not electrophilic, but in response to oxidation becomes electrophilic, and then activates the Keap1/Nrf2 pathway. PEDs appear to have minimal side effects, in part because they are generated preferentially in cells experiencing oxidative stress. In contrast, in the absence of oxidative stress, true electrophiles, unlike PEDs, react with and thus deplete glutathione, paradoxically rendering these normal cells susceptible to damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABCC:

ATP-binding cassette, sub-family C

AD:

Alzheimer’s disease

ARE:

antioxidant response element

BDNF:

brain-derived neurotrophic factor

CA:

carnosic acid

CAB:

biotinylated carnosic acid

CNTF:

ciliary neurotrophic factor

DA:

dopamine

EP:

electrophile

ER:

endoplasmic reticulum

GCLM:

glutamyl cysteine ligase modifier subunit

GCLC:

glutamyl cysteine ligase catalytic subunit

GSSG:

disulfide form of glutathione

GPX:

glutathione peroxidase

GR:

NADPH-dependent GSSG reductase

GST:

glutathione-S-transferase

HHE:

trans-4-hydroxy-2-hexenal

HNE:

trans-4-hydroxy-2-nonenal

H2O2 :

hydrogen peroxide

HO-1:

hemeoxygenase-1

HSE:

heat-shock factor response element

HSF-1:

heat-shock factor-1

HSP:

heat-shock protein

∙HO:

hydroxyl radical

NEPP:

neurite outgrowth-promoting prostaglandin

NMDA:

N-methyl-d-aspartate

NO2 :

nitric dioxide

NO:

nitric oxide

NQO1:

NADPH quinone oxidoreductase 1

NGF:

nerve growth factor

∙O2 :

superoxide radical anion

ONOO :

peroxynitrite

PAT:

pathologically activated therapeutic

PUFA:

poly-unsaturated fatty acids

PRX:

peroxyredoxin

PED:

pro-electrophilic drug

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SRXN:

ATP-dependent reductase, sulfiredoxin

TBHQ:

tert-butyl hydroquinone

TRX:

thioredoxin

TRXR:

thioredoxin reductase

xCT:

Na+-independent cystine-glutamate exchanger

References

  • Ahlgren-Beckendorf JA, Reising AM, Schander MA, Herdler JW, Johnson JA (1999) Coordinate regulation of NAD(P)H:quinone oxidoreductase and glutathione-S-transferase in primary cultures of rat neurons and glias: role of the antioxidant/electrophile responsive element. Glia 15:131–142

    Article  Google Scholar 

  • Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq M, Ahmad ME, Safhi MM, Islam F (2011) Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res 36:1360–1371

    Article  CAS  PubMed  Google Scholar 

  • Akaike T, Fujii S, Sawa T, Ihara H (2010) Cell signaling mediated by nitrated cyclic guanine nucleotide. Nitric Oxide 23:166–174

    Article  CAS  PubMed  Google Scholar 

  • Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136

    Article  CAS  PubMed  Google Scholar 

  • Arteel GE, Sies H (2001) The biochemistry of selenium and the glutathione system. Environ Toxicol Pharmacol 10:153–158

    Article  CAS  PubMed  Google Scholar 

  • Bredesen DE (2008) Programmed cell death mechanism in neurological diseases. Curr Mol Med 8:173–186

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Weisman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  CAS  PubMed  Google Scholar 

  • Burdo J, Schubert D, Maher P (2008) Glutathione production is regulated via distinct pathways in stressed and non-stressed cortical neurons. Brain Res 1189:12–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bureau G, Longpré F, Martinoli MG (2008) Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 86: 403–410

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Reed T, Sultana R (2011) Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radic Res 45:59–72

    Article  CAS  PubMed  Google Scholar 

  • Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    Article  PubMed  Google Scholar 

  • Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG (2004) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279:50994–51001

    Article  CAS  PubMed  Google Scholar 

  • Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-Nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Google Scholar 

  • Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-Nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-Nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104:18742–18747

    Article  CAS  PubMed  Google Scholar 

  • Fourquet S, Guerois R, Biard D, Toledano MB (2010) Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem 285:8463–8471

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Sawa T, Ihara H, Tong KI, Ida T, Okamoto T, Ahtesham AK, Ishima Y, Motohashi H, Yamamoto M, Akaike T (2010) The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J Biol Chem 285:23970–23984

    Article  CAS  PubMed  Google Scholar 

  • Garden GA, La Spada AR (2012) Intercellular (Mis)communication in neurodegenerative disease. Neuron 73:886–901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groeger AL, Freeman BA (2010) Signaling actions of electrophiles: anti-inflammatory therapeutic candidates. Mol Interv 10:39–50

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hanneken A, Lin FF, Johnson J, Maher P (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 47:3164–3177

    Article  PubMed  Google Scholar 

  • Hara MR, Snyder SH (2007) Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol 47:117–141

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Lipton SA (2011) Regulation of neuronal oxidative and nitrosative stress by endogenous protective pathways and disease processes. Antioxid Redox Signal 14:1421–1424

    Article  CAS  PubMed  Google Scholar 

  • Hastings TG (2009) The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr 41:469–472

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396:120–124

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Freeman ML, Lieber DC (2005) Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18:1917–1926

    Article  CAS  PubMed  Google Scholar 

  • Immenschuh S, Baumgart-Vogt E (2005) Peroxiredoxin, oxidative stress and cell proliferation. Antioxid Redox Signal 7:768–777

    Article  CAS  PubMed  Google Scholar 

  • Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson J, Maher P, Hanneken A (2009) The flavonoid, eriodictyol, induces long-term protection in ARPE-19 cells through its effects on Nrf2 activation and phase 2 gene expression. Invest Ophthalmol Vis Sci 50:2398–2406

    Article  PubMed Central  PubMed  Google Scholar 

  • Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, Woodcock SR, Yamamoto M, Carlberg C, Ylä-Herttuala S, Freeman BA, Levonen AL (2011) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 286:14019–14027

    Article  CAS  PubMed  Google Scholar 

  • Kim W-K, Choi Y-B, Rayudu PV, Das P, Asaad W, Arnelle DR, Stamler JS, Lipton SA (1999) Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl (NO). Neuron 24: 461–469

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, Eguchi M, Wada Y, Kumagai Y, Yamamoto M (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29:493–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24: 1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Calkins MJ, Chan K, Kan YW, Johonson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038

    Article  CAS  PubMed  Google Scholar 

  • Lewerenz J, Dargusch R, Maher P (2010) Lactacidosis modulates glutathione metabolism and oxidative glutamate toxicity. J Neurochem 113:502–514

    Article  CAS  PubMed  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    CAS  PubMed  Google Scholar 

  • Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, Hirrlinger PG, Kirchhoff F, Bissonnette JM, Ballas N, Mandel G (2011) A role for glia in the progression of Rett’s syndrome. Nature 475:497–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipton SA (2004) Concepts: turning down but not off–neuroprotection requires a paradigm shift in drug development. Nature 428:473

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA (2007) Pathologically-activated therapeutics. Nat Rev Neurosci 8:803–808

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Stamler JS (1994) Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology 33:1229–1233

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  CAS  PubMed  Google Scholar 

  • Long EK, Picklo MJ Sr (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic Biol Med 49:1–8

    Article  CAS  PubMed  Google Scholar 

  • Maher P (2008) The flavonoid fisetin promotes nerve cell survival from trophic factor withdrawal by enhancement of proteasome activity. Arch Biochem Biophys 476:139–144

    Article  CAS  PubMed  Google Scholar 

  • Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL (2011) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 20:261–270

    Article  CAS  PubMed  Google Scholar 

  • Mandel MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46:672–679

    Article  Google Scholar 

  • Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res Rev 8:285–305

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress response. Trends Neurosci 29:632–639

    Article  CAS  PubMed  Google Scholar 

  • Milioli EM, Cologni P, Santos CC, Marcos TD, Yunes VM, Fernandes MS, Schoenfelder T, Costa-Campos L (2007) Effect of acute administration of hydroalcohol extract of Ilex paraguariensis St Hilaire (Aquifoliaceae) in animal models of Parkinson’s disease. Phytother Res 21:771–776

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  CAS  PubMed  Google Scholar 

  • Murphy TH, De Long MJ, Coyle JT (1991) Enhanced NAD(P)H:quinone reductase activity prevents glutamate toxicity produced by oxidative stress. J Neurochem 56:990–995

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kumagai T, Yoshida C, Naito Y, Miyamoto M, Ohigashi H, Osawa T, Uchida K (2003) Pivotal role of electrophilicity in glutathione S-transferase induction by tert-butylhydroquinone. Biochemistry 15:4300–4309

    Article  Google Scholar 

  • Nakamuara T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    Article  Google Scholar 

  • Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, Clemente AT, Okamoto S, Salvesen GS, Riek R, Yates JR 3rd, Lipton SA (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39:184–195

    Google Scholar 

  • Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, Clemente AT, Okamoto S, Salvesen GS, Riek R, Yates JR III, Lipton SA (2011) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39:184–195

    Article  Google Scholar 

  • Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14:109–121

    Article  CAS  PubMed  Google Scholar 

  • Numajiri N, Takasawa K, Nishiya T, Hayakawa W, Asada M, Matsuda H, Azumi K, Tanaka H, Hyakkoku K, Kamata H, Nakamura T, Hara H, Minami M, Lipton SA, Uehara T (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci USA 108:10349–10354

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21:689–700

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by β-amyloid peptide. Proc Natl Acad Sci USA 108:14330–14335

    Article  CAS  PubMed  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Jeong W, Chang TS, Woo HA (2007) Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int Suppl 106:S3–S8

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Tozawa T, Van Wagoner RM, Ireland CM, Harper MK, Satoh T (2011) Strongylophorine-8, a pro-electrophilic compound from the marine sponge Petrosia (Strongylophora) corticata, provides neuroprotection through Nrf2/ARE pathway. Biochem Biophys Res Commun 415: 6–10

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Lipton SA (2007) Redox regulation of neuronal survival by electrophilic compounds. Trends Neurosci 30:38–45

    Google Scholar 

  • Satoh T, Furuta K, Tomokiyo K, Nakatsuka D, Tanikawa M, Nakanishi M, Miura M, Tanaka S, Koike T, Hatanaka H, Ikuta K, Suzuki M, Watanabe Y (2000) Facilitatory roles of novel compounds designed from cyclopentenone prostaglandins on neurite outgrowth-promoting activities of nerve growth factor. J Neurochem 75:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Furuta K, Tomokiyo K, Namura S, Nakatsuka D, Sugie Y, Ishikawa Y, Hatanaka H, Suzuki M, Watanabe Y (2001) Neurotrophic actions of novel compounds designed from cyclopentenone prostaglandins. J Neurochem 77:50–62

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Baba M, Nakatsuka D, Ishikawa Y, Aburatani H, Furuta K, Ishikawa T, Hatanaka H, Suzuki M, Watanabe Y (2003) Role of heme oxygenase-1 protein in the neuroprotective effects by cyclopentenone prostaglandin derivatives as a sustained phase of neuronal survival promoting mechanism under oxidative stress. Eur J Neurosci 17:2249–2255

    Article  PubMed  Google Scholar 

  • Satoh T, Okamoto S, Cui J, Watanabe Y, Furuta K, Suzuki M, Tohyama K, Lipton SA (2006) Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc Natl Acad Sci USA 103:768–773

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Shirasawa T, Lipton SA (2008a) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteines. J Neurochem 104:1116–1131

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Izumi M, Inukai Y, Tsutumi Y, Nakayama N, Kosaka K, Kitajima C, Itoh K, Yokoi T, Shirasawa T (2008b) Carnosic acid protects neuronal HT22 cells through activation of the antioxidant-responsive element in free carboxylic acid- and catechol hydroxyl moieties-dependent manners. Neurosci Lett 434:260–265

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Saitoh S, Hosaka H, Kosaka K (2009a) Simple ortho- and para-hydroquinones as neuroprotective compounds against oxidative stress associated with a specific transcriptional activation. Biochem Biophys Res Commun 379:537–541

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Harada N, Hosoya T, Tohyama K, Yamamoto M, Itoh K (2009b) Keap1/Nrf2 system regulates neuronal survival as revealed through study of keap1 gene knockout mice. Biochem Biophys Res Commun 380:298–302

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Rezaie T, Seki M, Sunico CR, Tabuchi T, Kitagawa T, Yanagitai M, Senzaki M, Kosegawa C, Taira H, McKercher SR, Hoffman JK, Roth GP, Lipton SA (2011) Dual neuroprotective pathways of a pro-electrophilic compound via HSF-1-activated heat-shock proteins and Nrf2-activated phase 2 antioxidant response enzymes. J Neurochem 119:569–578

    Article  CAS  PubMed  Google Scholar 

  • Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    Article  CAS  PubMed  Google Scholar 

  • Shih AY, Erb H, Murphy TH (2007) Dopamine activates Nrf2-regulated neuroprotective pathways in astrocytes and meningeal cells. J Neurochem 101:109–119

    Article  CAS  PubMed  Google Scholar 

  • Soriano FX, Leveille F, Papadia S, Higgins LG, Varley J, Baxter P, Hayes JD, Hardingham GE (2008) Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by neuroprotective Nrf2 activator 3H-1,2-dithiol-3-thione. J Neurochem 107:533–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soriano FX, Baxter P, Murray LM, Sporn MB, Gillingwater TH, Hardingham GE (2009) Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol Cells 27: 279–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suematsu N, Hosoda M, Fujimori K (2011) Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci Lett 504:223–227

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Erb H, Murphy TH (2005) Coordinate regulation of glutathione metabolism in astrocytes by Nrf2. Biochem Biophys Res Commun 326:371–377

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T (2009) Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3 T3-L1 cells through induction of phase 2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 382: 549–554

    Article  CAS  PubMed  Google Scholar 

  • Takahata Y, Takarada T, Iemata M, Yamamoto T, Nakamura Y, Kodama A, Yoneda Y (2009) Functional expression of beta2 adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells. J Cell Physiol 218:268–275

    Article  CAS  PubMed  Google Scholar 

  • Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    Article  CAS  PubMed  Google Scholar 

  • Tamaki Y, Tabuchi T, Takahashi T, Kosaka K, Satoh T (2010) Activated glutathione metabolism participates in protective effects of carnosic acid against oxidative stress in neuronal HT22 cells. Planta Med 76:683–688

    Article  CAS  PubMed  Google Scholar 

  • Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  CAS  PubMed  Google Scholar 

  • Um HC, Jang JH, Kim DH, Lee C, Surh YJ (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168

    Article  CAS  PubMed  Google Scholar 

  • Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    Article  PubMed  Google Scholar 

  • Wang XJ, Hayes JD, Higgins LJ, Wolf CR, Dinkova-Kostova AT (2010) Activation of the NRF2 signaling pathway by copper-mediated redox cycling of para- and ortho-hydroquinones. Chem Biol 17:75–85

    Article  PubMed  Google Scholar 

  • Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem 30:453–461

    Article  CAS  Google Scholar 

  • Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-Nitrosylation of parkin regulates it E3 ligase activity. Proc Natl Acad Sci USA 101:10810–10814

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 bysulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Larry D. Frye (Biomdcom) and Scott McKercher for help with manuscript preparation and Dr. Tomohiro Nakamura (Sanford-Burnham Medical Research Institute) for valuable discussions concerning chemical reactions. Our studies described in this chapter were supported in part by a grant from the JSPS, Joint Project of Japan–U.S., from the MEXT Japan, from Grants-in-Aid for Scientific Research (No.19500261; No. 22500282), and from Grants-in-Aid for Scientific Research on Innovative Areas (No. 2011701) to T.S. Other support for our studies came from NIH grants R01 EY05477, P01 ES016738, P01 HD29587, and P30 NS057096/P30 NS076411 to S.A.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takumi Satoh or Stuart A. Lipton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Satoh, T., Akhtar, M.W., Lipton, S.A. (2013). Combating Oxidative/Nitrosative Stress with Electrophilic Counterattack Strategies. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_10

Download citation

Publish with us

Policies and ethics