Skip to main content

Stromule Formation

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

Stromules are highly dynamic stroma-filled tubules extending from the surface of plastids in all multicellular plants. Although stromules may interconnect two, or more, plastids and allow the transfer of stromal proteins as large as Rubisco (∼550 kDa) between plastids, their function is still largely a matter of conjecture. They may increase the plastid surface area to facilitate movement of materials into or out of plastids, be involved in sensing the cellular environment, and/or have signaling functions due to close apposition of stromules and nuclei, plasma membrane and other cell organelles. Stromule formation appears unrelated to chloroplast division or to light-intensity-dependent chloroplast movement. Stromules are most easily observed by confocal microscopy of cells expressing plastid-targeted fluorescent proteins, and the definition of stromules is based on such observations. Identification of stromules in electron microscope images is problematic, and ideally requires examination of thin serial sections. In leaves of both monocots and dicots, stromules are most abundant in epidermal cell-types, such as trichomes, guard cells and pavement cells, and are more difficult to observe in mesophyll cells containing large closely packed chloroplasts. Stromule formation and movement depends on the actin cytoskeleton and requires the ATPase activity of myosin XI proteins. A 42-amino-acid-residue region of myosin XI that directs myosin XI to the chloroplast periphery offers prospects for identification of stromule components required for stromule mobility. Stromules are affected by various environmental factors and by biotic stresses. Stromules are induced by water stress, acting via abscisic acid signaling pathways, and by viral infection. Stromule abundance is also affected by light and temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

Abscisic acid;

ACC:

1-amino­cyclopropane-1-carboxylic acid;

APM:

Amiprophosmethyl;

BDM:

2,3-butanedione 2-monoxime;

BiFC:

Bimolecular fluorescence complementation;

CFP:

Cyan fluorescent protein;

DIC:

Differential interference contrast;

GFP:

Green fluorescent protein;

OEP14:

Outer envelope protein of 14 kDa;

PEG:

Polyethylene glycol;

TIC:

Translocon of the inner chloroplast envelope membrane;

TMV:

Tobacco mosaic virus;

TOC:

Translocon of the outer chloroplast envelope membrane;

TPT:

Triose phosphate–phosphate translocator;

VIGS:

Virus-induced gene silencing;

YFP:

Yellow fluorescent protein

References

  • Albrecht V, Simková K, Carrie C, Delannoy E, Giraud E, Whelan J, Small ID, Apel K, Badger MR, Pogson BJ (2010) The cytoskeleton and peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis. Plant Cell 22:3423–3438

    Article  PubMed  CAS  Google Scholar 

  • Arimura S-I, Hirai A, Tsutsumi N (2001) Numerous and highly developed tubular projections from plastids observed in tobacco mesophyll cells. Plant Sci 169:449–454

    Article  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    Article  PubMed  CAS  Google Scholar 

  • Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes LA (2009) A comparative study on the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709

    Article  PubMed  CAS  Google Scholar 

  • Bechtel DB, Wilson JD (2003) Amyloplast formation and starch granule development in hard red winter wheat. Cereal Chem 80:175–183

    Article  CAS  Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1999) Ultrastr­ucture of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208:472–479

    Article  CAS  Google Scholar 

  • Buchner O, Holzinger A, Lütz C (2007a) Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Buchner O, Lütz C, Holzinger A (2007b) Design and construction of a new temperature-controlled chamber for light and confocal microscopy under monitored conditions: biological applications for plant samples. J Microsc 225:183–191

    Article  PubMed  CAS  Google Scholar 

  • Buttrose MS (1960) Submicroscopic development and structure of starch granules in cereal endosperms. J Ultrastruct Res 4:231–257

    Article  PubMed  CAS  Google Scholar 

  • Buttrose MS (1963) Ultrastructure of the developing wheat endosperm. Aust J Biol Sci 16:305–317

    Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    Article  PubMed  CAS  Google Scholar 

  • Dvorák J, Stokrová J (1993) Structure of the needles in the early phases of development in Pinus ponderosa P. et C. Lawson with special reference to plastids. Ann Bot 72:423–431

    Article  Google Scholar 

  • Esau K (1944) Anatomical and cytological studies on beet mosaic. J Agric Res 69:95–117

    Google Scholar 

  • Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA–green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523

    Article  PubMed  CAS  Google Scholar 

  • Faull AF (1935) Elaioplasts in iris: a morphological study. J Arnold Arbor 16:225–267

    Google Scholar 

  • Forth D, Pyke KA (2006) The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening. J Exp Bot 57:1971–1979

    Article  PubMed  CAS  Google Scholar 

  • Freeman T, Duysen M (1975) The effect of imposed water stress on the development and ultrastructure of wheat chloroplasts. Protoplasma 83:131–145

    Article  Google Scholar 

  • Fujiwara M, Yoshida S (2001) Chloroplast targeting of chloroplast division FtsZ2 proteins in Arabidopsis. Biochem Biophys Res Commun 287:462–467

    Article  PubMed  CAS  Google Scholar 

  • Gielwanowska I, Szczuka E, Bednara J, Gorecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119

    Article  PubMed  Google Scholar 

  • Gnanasambandam A, Polkinghorne IG, Birch RG (2007) Heterologous signals allow efficient targeting of nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species. Plant Biotechnol J 5:290–296

    Article  PubMed  Google Scholar 

  • Gray JC, Hibberd JM, Linley PJ, Uijtewaal B (1999) GFP movement between chloroplasts. Nat Biotechnol 17:1146

    Article  PubMed  CAS  Google Scholar 

  • Gray JC, Sullivan J, Hibberd JM, Hansen MR (2001) Stromules: mobile protrusions and interconnections between plastids. Plant Biol 3:223–233

    Article  CAS  Google Scholar 

  • Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SKA, Newell CA (2012) Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J 69:387–398

    Google Scholar 

  • Guilliermond A (1934) Les Constituants Morpho­logique du Cytoplasme: Le Chondriome. Hermann, Paris

    Google Scholar 

  • Gunning BES (2005) Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma 225:33–42

    Article  PubMed  Google Scholar 

  • Gunning BES (2009) Plant Cell Biology on DVD. Springer, Berlin. ISBN 978-3-642-03690-3

    Google Scholar 

  • Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31:646–657

    Article  PubMed  Google Scholar 

  • Hanson MR, Sattarzadeh A (2011) Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155:1486–1492

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Kura-Hotta M, Katoh S (1989) Changes in protein content and in the structure and number of chloroplasts during leaf senescence in rice seedlings. Plant Cell Physiol 30:707–715

    CAS  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11

    Article  PubMed  CAS  Google Scholar 

  • Heitz E (1937) Untersuchungen über den Bau der Plastiden. I. Die gerichteten Chlorophyllscheiden der Chloroplasten. Planta 26:134–163

    Article  Google Scholar 

  • Holzinger A, Buchner O, Lütz C, Hanson MR (2007a) Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma 230:23–30

    Article  PubMed  CAS  Google Scholar 

  • Holzinger A, Wasteneys GO, Lütz C (2007b) Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna. Plant Biol 9:400–410

    Article  PubMed  CAS  Google Scholar 

  • Holzinger A, Kwok EY, Hanson MR (2008) Effects of arc3, arc5 and arc6 mutations on plastid morphology and stromule formation in green and nongreen tissues of Arabidopsis thaliana. Photochem Photobiol 84:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Hongladarom T, Honda S, Wildman SG (1964) Organelles in living plant cells. Videotape available from University of California Extension Center for Media and Independent Learning, 2000 Center St, Berkeley, 94704

    Google Scholar 

  • Huang CX, van Steveninck RFM (1990) Salinity induced structural changes in meristematic cells of barley roots. New Phytol 115:17–22

    Article  Google Scholar 

  • Huang J, Taylor JP, Chen J-G, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Gray JC (2009) Interaction of actin and the chloroplast protein import apparatus. J Biol Chem 284:19132–19141

    Article  PubMed  CAS  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106:13106–13111

    Article  PubMed  CAS  Google Scholar 

  • Kandel-Kfir M, Damari-Weissler H, German MA, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta 224:21341–21352

    Article  Google Scholar 

  • Knoblauch M, Hibberd JM, Gray JC, van Bel AJE (1999) A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotechnol 17:906–909

    Article  PubMed  CAS  Google Scholar 

  • Köhler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113:81–89

    PubMed  Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Köhler RH, Schwille P, Webb WW, Hanson MR (2000) Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci 113:3921–3930

    PubMed  Google Scholar 

  • Kojo KH, Fujiwara MT, Itoh RD (2009) Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana. Biosci Biotechnol Biochem 73:2632–2639

    Article  PubMed  CAS  Google Scholar 

  • Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T (2010) A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401:6–17

    Article  PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2003) Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35:16–26

    Article  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004a) GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot 55:595–604

    Article  PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2004b) In vivo analysis of interactions between GFP-labeled microfilaments and plastid stromules. BMC Plant Biol 4:2

    Article  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004c) Stromules and the dynamic nature of plastid morphology. J Microsc 214:124–137

    Article  PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2004d) Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep 23:188–195

    Article  PubMed  CAS  Google Scholar 

  • Laetsch WM, Price I (1969) Development of the dimorphic chloroplasts of sugar cane. Am J Bot 56:77–87

    Article  Google Scholar 

  • Langeveld SMJ, van Wijk R, Stuurman N, Kijne JW, de Pater S (2000) B-type granule containing protrusions and interconnections between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. J Exp Bot 51:1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Lütz C (1977) Cytology of high alpine plants II. Microbody activity in leaves of Ranunculus glacialis L. Cytologia 52:679–686

    Article  Google Scholar 

  • Lütz C (2010) Cell physiology of plants growing in cold environments. Protoplasma 244:53–73

    Article  PubMed  Google Scholar 

  • Lütz C, Engel L (2007) Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate? Protoplasma 231:183–192

    Article  PubMed  Google Scholar 

  • Lütz C, Moser W (1977) Beiträge zur Cytologie hochalpiner Pflanzen. I. Untersuchungen zur Ultrastruktur von Ranunculus glacialis L. (Gletscherhahnenfuß). Flora 166:21–34

    Google Scholar 

  • Mittelheuser CJ, van Steveninck RFM (1971) The ultrastructure of wheat leaves. II. The effects of kinetin and ABA on detached leaves incubated in the light. Protoplasma 73:253–262

    Article  CAS  Google Scholar 

  • Musser R, Thomas SA, Wise RR, Peeler TC, Naylor AW (1984) Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiol 74:749–754

    Article  PubMed  CAS  Google Scholar 

  • Natesan SKA, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787–797

    Article  PubMed  CAS  Google Scholar 

  • Natesan SKA, Sullivan JA, Gray JC (2009) Myosin XI is required for actin-associated movement of plastid stromules. Mol Plant 2:1262–1272

    Article  PubMed  CAS  Google Scholar 

  • Nishibayashi S, Kuroiwa T (1982) Behavior of leucoplast nucleoids in the epidermal cell of onion (Allium cepa) bulb. Protoplasma 110:177–184

    Article  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K-I (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646

    Article  PubMed  CAS  Google Scholar 

  • Parker ML (1985) The relationship between A-type and B-type starch granules in the developing endosperm of wheat. Cereal Sci 3:271–278

    Article  Google Scholar 

  • Pressel S, Duckett JG (2010) Cytological insights into the desiccation biology of a model system: moss protonema. New Phytol 185:944–963

    Article  PubMed  Google Scholar 

  • Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2008) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ, and maize ferredoxin III proteins. Transgenic Res 17:529–543

    Article  PubMed  CAS  Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007) Desicca­tion tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    Article  CAS  Google Scholar 

  • Pyke KA, Howells CA (2002) Plastid and stromule morphogenesis in tomato. Ann Bot 90:559–566

    Article  PubMed  CAS  Google Scholar 

  • Raab S, Toth Z, de Groot C, Stamminger T, Hoth S (2006) ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings. Planta 224:900–914

    Article  PubMed  CAS  Google Scholar 

  • Reisen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol 7:6

    Article  PubMed  Google Scholar 

  • Rokov-Plavec J, Dulic M, Duchene A-M, Weygand-Durasevic I (2008) Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. Plant Cell Rep 27:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–777

    Article  PubMed  CAS  Google Scholar 

  • Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal G (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway id compartmentalized to peroxisomes. Plant Physiol 148:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Sattarzadeh A, Krahmer J, Germain AD, Hanson MR (2009) A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Mol Plant 2:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Sattarzadeh A, Fuller J, Moguel S, Wostrikoff K, Sato S, Covshoff S, Clemente T, Hanson M, Stern DS (2010) Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids. Plant Biotechnol J 8:112–125

    Article  PubMed  CAS  Google Scholar 

  • Scepánková L, Hudák J (2004) Leaf and tepal anatomy, plastid ultrastructure and chlorophyll content in Galanthus nivalis L. and Leucojum aestivum L. Plant Syst Evol 243:211–219

    Article  Google Scholar 

  • Schattat MH, Barton K, Baudisch B, Klossgen RB, Mathur J (2011) Plastid stromule branching coincides with contiguous ER dynamics. Plant Physiol 155:1667–1677

    Article  PubMed  CAS  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Wilhelm Engelmann Verlag, Leipzig

    Google Scholar 

  • Shalla TA (1964) Assembly and aggregation of tobacco mosaic virus in tomato leaflets. J Cell Biol 21:253–264

    Article  PubMed  CAS  Google Scholar 

  • Shaw DJ, Gray JC (2011) Visualisation of stromules in transgenic wheat expressing a plastid-targeted yellow fluorescent protein. Planta 233:961–970

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Hayashi K, Ishii N, Morikawa K, Toyoshima Y (2000) Chloroplast tubules visualized in transplastomic plants expressing green fluorescent protein. Plant Cell Physiol 41:367–371

    Article  PubMed  CAS  Google Scholar 

  • Spencer D, Wildman SG (1962) Observations on the structure of grana-containing chloroplasts and a proposed model of chloroplast structure. Aust J Biol Sci 15:599–610

    Google Scholar 

  • Tirlapur UK, König K (2001) Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis. Planta 214:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tirlapur UK, Dahse I, Reiss B, Meurer J, Oelmüller R (1999) Characterization of the activity of a plastid-targeted green fluorescent protein in Arabidopsis. Eur J Cell Biol 78:233–240

    Article  PubMed  CAS  Google Scholar 

  • Vesk M, Mercer FV, Possingham JV (1965) Observations on the origin of chloroplasts and mitochondria in the leaf cells of higher plants. Aust J Bot 13:161–169

    Google Scholar 

  • Vitha S, McAndrew RS, Osteryoung KW (2001) FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153:111–119

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D (1957) Chlorophyll-Letale und der Submikroskopische Formwechsel der Plastiden. Exp Cell Res 12:427–506

    Article  Google Scholar 

  • Voznesenskaya EV, Chuong SDX, Koteyeva NK, Edwards GE, Franceschi VR (2005) Functional compartmentation of C4 photosynthesis in the triple-layered chlorenchyma of Aristida (Poaceae). Funct Plant Biol 32:67–77

    Article  CAS  Google Scholar 

  • Waters MT, Fray RG, Pyke KA (2004) Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J 39:655–667

    Article  PubMed  Google Scholar 

  • Weier TE, Thomson WW (1962) Membranes of mesophyll cells of Nicotiana rustica and Phaseolus vulgaris with particular reference to the chloroplast. Am J Bot 49:807–820

    Article  Google Scholar 

  • Whatley JM (1974) Chloroplast development in primary leavers of Phaseolus vulgaris. New Phytol 73:1097–1110

    Article  Google Scholar 

  • Wildman SG (1967) The organization of grana-containing chloroplasts in relation to location of some enzymatic systems concerned with photosynthesis, protein synthesis, and ribonucleic acid synthesis. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 2. Academic, London, pp 295–319

    Google Scholar 

  • Wildman SG, Hongladarom T, Honda SI (1962) Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies. Science 138:434–436

    Article  PubMed  CAS  Google Scholar 

  • Yan XX (1995) NaCl-induced amoeboid plastids and mitochondria in meristematic cells of barley roots. Biol Plant 37:363–369

    Article  Google Scholar 

Download references

Acknowledgments

I am extremely grateful to Jim Sullivan, Michael Hansen and Senthil Natesan for providing previously unpublished images of stromules, and to John Carr for discussion of virus infection. The work in my laboratory on stromules has been supported by research grants from the Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gray, J.C. (2013). Stromule Formation. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_9

Download citation

Publish with us

Policies and ethics