Skip to main content

Chloroplast Contact to the Endoplasmic Reticulum and Lipid Trafficking

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

The higher plant chloroplast membranes are mainly composed of galactolipids assembled from diacylglycerol backbones in the chloroplast envelope. All plants depend on import of diacylglycerol backbones from the endoplasmic reticulum (ER). During phosphate limitation digalactosyl diacylglycerol synthesized in the plastid envelope is exported to other extra­plastid membranes. In addition, use of fatty acid desaturase mutants demonstrates lipid export from the chloroplast under normal growth conditions as well. Isoprenoid compounds such as plastoquinone are also most likely transported from the ER to the chloroplast. Thus, there must be one or several mechanisms present in the plant cell to mediate directional transport of highly hydrophobic molecules between the ER and the plastid. The molecular details of the transport system(s) remain to be determined. However, there is evidence to suggest that a specialized domain of the ER is associated with chloroplasts and thus likely to be directly involved in transfer of hydrophobic compounds between the compartments. The identification of the TGD-transporter complex represents a significant advance towards understanding the transport of precursors for membrane lipid synthesis in the plastid. The recently described molecular details of contact sites between ER and mitochondria in yeast and mammalian cells should inspire similar studies to uncover the same details in ER chloroplast contacts in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

     For a specialized review on acyl lipid metabolism in Arabidopsis including clickable pathway maps see Li-Beisson et al. in The Arabidopsis Book 8: e0133. 2010 and the accompanying web site found at: http://aralip.plantbiology.msu.edu/

  2. 2.

     Since the original preparation of the manuscript, the TGD4 protein has been shown to be localized to the outer chloroplast envelope rather than the ER (Wang et al. 2012) and the TGD1, 2 and 3 components reported to indeed form an ABC transporter complex (Roston et al. 2012).

Abbreviations

ACP:

– Acyl carrier protein;

CoA:

– Coenzyme A;

DAG:

– Diacylglycerol;

DGDG:

– Digalactosyl diacylglycerol;

ER:

– Endoplasmic reticulum;

LACS:

– Long chain acyl coenzyme A synthase;

LTP:

– Lipid transfer protein;

MAM:

– Mitochondria associated membranes;

MGDG:

– Monogalactosyl diacylglycerol;

PA:

– Phosphatidic acid;

PAP:

– Phosphatidic acid phosphatase;

PC:

– Phosphatidylcholine;

PG:

– Phosphatidylglycerol;

PLAM:

– Plastid asso­ciated membranes;

PLD:

– Phospholipase D; TGD –Trigalactosyl diacylglycerol

References

  • Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Dörmann P (2008) Chloroplast membrane lipid biosynthesis and transport. In: Sandelius AS, Aronsson H (eds) The chloroplast: interactions with the environment, vol 13. Springer, Berlin, pp 125–159

    Chapter  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Kjellberg JM, Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim Biophys Acta Mol Cell Biol Lipids 1684:46–53

    Article  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat: the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Goksor M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282:1170–1174

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Keegstra K (1983) Acyl-coenzyme a ­synthesise is located in the outer membrane and acyl-co enzyme a thioesterase in the inner membrane of pea (Pisum ­sativum cultivar laxtons progress no. 9) chloroplast envelopes. Plant Physiol 72:735–740

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Xu CC, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822

    Article  PubMed  CAS  Google Scholar 

  • Bai JN, Pagano RE (1997) Measurement of spontaneous transfer and transbilayer movement of bodipy-labeled lipids in lipid vesicles. Biochemistry 36:8840–8848

    Article  PubMed  CAS  Google Scholar 

  • Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282:31206–31216

    Article  PubMed  CAS  Google Scholar 

  • Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150:55–72

    Article  PubMed  CAS  Google Scholar 

  • Bessoule JJ, Testet E, Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic-reticulum membranes. Eur J Biochem 228:490–497

    Article  PubMed  CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts: 2. Biochemical characterization. J Biol Chem 258:13281–13286

    PubMed  CAS  Google Scholar 

  • Browse J, McConn M, James D, Miquel M (1993) Mutants of arabidopsis deficient in the synthesis of alpha-linolenate – biochemical and genetic-characterization of the endoplasmic-reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    PubMed  CAS  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH, Keegstra K (1981) Separation and characterization of inner and outer envelope membranes of pea (Pisum sativum cultivar laxtons progress 9) chloroplasts. Proc Natl Acad Sci USA 78:3595–3599

    Article  PubMed  CAS  Google Scholar 

  • Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    Article  PubMed  CAS  Google Scholar 

  • Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  CAS  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  Google Scholar 

  • Dörmann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118

    Article  PubMed  Google Scholar 

  • Dorne AJ, Joyard J, Block MA, Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100:1690–1697

    Article  PubMed  CAS  Google Scholar 

  • Dubacq JP, Drapier D, Tremolieres A, Kader JC (1984) Role of phospholipid transfer protein in the exchange of phospholipids between microsomes and chloroplasts. Plant Cell Phys 25:1197–1204

    CAS  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625

    Article  PubMed  CAS  Google Scholar 

  • Gaigg B, Simbeni R, Hrastnik C, Paltauf F, Daum G (1995) Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Biochim Biophys Acta 1234:214–220

    Article  PubMed  Google Scholar 

  • Gardiner SE, Heinz E, Roughan PG (1984) Rates and products of long-chain fatty-acid synthesis from ­carbon-14-labeled acetate in chloroplasts isolated from leaves of 16:3 and 18:3 plants. Plant Physiol 74:890–896

    Article  CAS  Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dörmann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and lotus. J Biol Chem 279:34624–34630

    Article  PubMed  CAS  Google Scholar 

  • Hanada K (2004) Molecular machinery for intracellular trafficking of ceramide. FASEB J 18:C226–C227

    Article  Google Scholar 

  • Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31:646–657

    Article  PubMed  Google Scholar 

  • Hanson MR, Sattarzadeh A (2011) Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155:1486–1492

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Benning C (2000) Can digalactosyldiacylglycerol substitute for phosphatidylcholine upon phosphate deprivation in leaves and roots of arabidopsis? Biochem Soc Trans 28:729–732

    Article  PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) Dgd1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Article  PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2001) Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants. J Photochem Photobiol 61:46–51

    Article  Google Scholar 

  • Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) Mam: more than just a house keeper. Trends Cell Biol 19:81–88

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk JWM, Storz T, Schmidt RR, Heinz E (1990) Biosynthesis of digalactosyldiacylglycerol in plastids from 16–3 and 18–3 plants. Plant Physiol 93:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Heinz E, Roughan P (1983) Similarities and differences in lipid metabolism of chloroplasts ­isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279

    Article  PubMed  CAS  Google Scholar 

  • Holthuis JCM, Levine TP (2005) Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 6:209–220

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Marechal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of dgdg galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Marechal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Douce R (1976) Separation and role of diacylglycerols in the envelope of spinach chloroplasts. Physiol Veg 14:31–48

    CAS  Google Scholar 

  • Joyard J, Stumpf PK (1981) Synthesis of long-chain acyl-coenzyme a in chloroplast envelope. Plant Physiol 67:250–256

    Article  CAS  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Kader JC (1997) Lipid-transfer proteins: a puzzling ­family of plant proteins. Trends Plant Sci 2:66–70

    Article  Google Scholar 

  • Kaneko Y, Keegstra K (1996) Plastid biogenesis in embryonic pea leaf cells during early germination. Protoplasma 195:59–67

    Article  Google Scholar 

  • Kelly AA, Dörmann P (2002) Dgd2, an arabidopsis gene encoding a udp-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kjellberg JM, Trimborn M, Andersson M, Sandelius AS (2000) Acyl-CoA dependent acylation of phospholipids in the chloroplast envelope. Biochim Biophys Acta 1485:100–110

    Article  PubMed  CAS  Google Scholar 

  • Koo AJK, Ohlrogge JB, Pollard M (2004) On the export of fatty acids from the chloroplast. J Biol Chem 279:16101–16110

    Article  PubMed  CAS  Google Scholar 

  • Kornmann B, Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123:1389–1393

    Article  PubMed  CAS  Google Scholar 

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2003) Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35:16–26

    Article  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004a) Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep 23:188–195

    Article  PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2004b) Stromules and the dynamic nature of plastid morphology. J Microsc-Oxf 214:124–137

    Article  CAS  Google Scholar 

  • Lee I, Hong WJ (2006) Diverse membrane-associated proteins contain a novel smp domain. FASEB J 20:202–206

    Article  PubMed  CAS  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates BD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly A, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl lipid metabolism. The Arabidopsis Book 8:e0133. doi:0110.1199/tab.0133

    PubMed  Google Scholar 

  • Lu B, Xu C, Awai K, Jones AD, Benning C (2007) A small atpase protein of Arabidopsis, tgd3, involved in chloroplast lipid import. J Biol Chem 282:35945–35953

    Article  PubMed  CAS  Google Scholar 

  • McLean LR, Phillips MC (1984) Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. Biochemistry 23:4624–4630

    Article  PubMed  CAS  Google Scholar 

  • McLean B, Whatley JM, Juniper BE (1988) Continuity of chloroplast and endoplasmic-reticulum membranes in chara and equisetum. New Phytol 109:59–65

    Article  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis: biochemical and genetic characterization of a plant oleoylphosphatidylcholine desaturase. J Biol Chem 267:1502–1509

    PubMed  CAS  Google Scholar 

  • Mongrand S, Bessoule JJ, Cassagne C (1997) A re-examination in vivo of the phosphatidylcholine-galactolipid metabolic relationship during plant lipid biosynthesis. Biochem J 327:853–858

    PubMed  CAS  Google Scholar 

  • Mongrand S, Bessoule JJ, Cabantous F, Cassagne C (1998) The C-16: 3/C-18: 3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064

    Article  CAS  Google Scholar 

  • Mongrand S, Cassagne C, Bessoule JJ (2000) Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122:845–852

    Article  CAS  Google Scholar 

  • Nakamura Y, Tsuchiya M, Ohta H (2007) Plastidic ­phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Koizumi R, Shui GH, Shimojima M, Wenk MR, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci USA 106:20978–20983

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    PubMed  CAS  Google Scholar 

  • Pollard M, Ohlrogge J (1999) Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling. Plant Physiol 121:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Im YJ, Hurley JH, Prinz WA (2006) Nonvesicular sterol movement from plasma membrane to er requires oxysterol-binding protein-related proteins and phosphoinositides. J Cell Biol 173:107–119

    Article  PubMed  CAS  Google Scholar 

  • Roston RL, Gao J, Xu C, Benning C (2011) Arabidopsis chloroplast lipid transport protein tgd2 disrupts membranes and is part of a large complex. Plant J 66:759–769

    Article  PubMed  CAS  Google Scholar 

  • Roston RL, Gao J, Murcha MW, Whelan J, Benning C (2012) TGD1, -2, -3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate binding proteins. J Biol Chem 287:21406–21415

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990) Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94:773–780

    Article  PubMed  CAS  Google Scholar 

  • Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F (2009) The targeting of the oxysterol-binding protein orp3a to the endoplasmic reticulum relies on the plant vap33 homolog pva12. Plant J 58:817–830

    Article  PubMed  CAS  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme a synthetase from Arabidopsis. Plant Physiol 129:1700–1709

    Article  PubMed  CAS  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme a synthesise genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722

    Article  PubMed  CAS  Google Scholar 

  • Shore GC, Tata JR (1977) 2 fractions of rough endoplasmic-reticulum from rat-liver.1. Recovery of rapidly sedimenting endoplasmic-reticulum in association with mitochondria. J Cell Biol 72:714–725

    Article  PubMed  CAS  Google Scholar 

  • Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzulo R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book 9:e0143. doi:0110.1043/tab.0143

    PubMed  Google Scholar 

  • van Besouw A, Wintermans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529:44–53

    Article  PubMed  Google Scholar 

  • Vance JE (1990) Phospholipid-synthesis in a membrane-fraction associated with mitochondria. J Biol Chem 265:7248–7256

    PubMed  CAS  Google Scholar 

  • Vance JE (1991) Newly made phosphatidylserine and phosphatidylethanolamine are preferentially ­translocated between rat-liver mitochondria and endoplasmic-reticulum. J Biol Chem 266:89–97

    PubMed  CAS  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  Google Scholar 

  • Voelker DR (2000) Interorganelle transport of aminoglycerophospholipids. Biochim Biophys Acta 1486:97–107

    Article  PubMed  CAS  Google Scholar 

  • Voelker DR (2003) New perspectives on the regulation of intermembrane glycerophospholipid traffic. J Lipid Res 44:441–449

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xu C, Benning C (2012) TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J 70:614–623

    Article  PubMed  CAS  Google Scholar 

  • Wanke M, Swiezewska E, Dallner G (2001) Cell-free sorting of plastoquinone and ubiquinone in spinach cells. Plant Physiol Biochem 39:467–472

    Article  CAS  Google Scholar 

  • Whatley JM, McLean B, Juniper BE (1991) Continuity of chloroplast and endoplasmic-reticulum membranes in Phaseolus vulgaris. New Phytol 117:209–217

    Article  Google Scholar 

  • Williams JP, Imperial V, Khan MU, Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus l. Leaves. Biochem J 349:127–133

    Article  PubMed  CAS  Google Scholar 

  • Wooding FBP, Northcot D (1965) Association of endoplasmic reticulum and plastids in acer and pinus. Am J Bot 52:526–529

    Article  Google Scholar 

  • Xu CC, Fan JL, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in er to thylakoid lipid transfer in Arabidopsis. EMBO J 22:2370–2379

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the tgd1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110

    Article  PubMed  CAS  Google Scholar 

  • Xu CC, Fan JL, Cornish AJ, Benning C (2008) Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic tgd4 protein. Plant Cell 20:2190–2204

    Article  PubMed  CAS  Google Scholar 

  • Xu CC, Moellering ER, Muthan B, Fan JL, Benning C (2010) Lipid transport mediated by Arabidopsis tgd proteins is unidirectional from the endoplasmic ­reticulum to the plastid. Plant Cell Physiol 51:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Katavic V, Li F, Haughn GW, Kunst L (2010) Insertional mutant analysis reveals that long-chain acyl-coa synthesise 1 (lacs1), but not lacs8, functionally overlaps with lacs9 in Arabidopsis seed oil biosynthesis. Plant J 64:1048–1058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to express his gratitude to two anonymous reviewers for very constructive comments. Work in the authors lab is supported by the Swedish Research Council for Agriculture, Environmental Sciences and Spatial Planning (FORMAS, grant no. 2009-888), the Carl Tryggers foundation for scientific research and the Olle Engkvist Byggmästare foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats X. Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andersson, M.X. (2013). Chloroplast Contact to the Endoplasmic Reticulum and Lipid Trafficking. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_8

Download citation

Publish with us

Policies and ethics