Skip to main content

Organization and Assembly of Photosystem I

  • Chapter
  • First Online:
Book cover Plastid Development in Leaves during Growth and Senescence

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

Photosystem I (PSI), one of the two photosystems that drive electron transfer in oxygenic photosynthesis, is a very large pigment-protein complex with more than 100 cofactors. Crystal structure at 3.3 Å in higher plants, and that at 2.5 Å in cyanobacteria, gives us a detailed image of proteins and binding cofactors. However, most of the accumulated information is regarded as a snapshot of PSI. In spite of its general static image, components of PSI must be newly synthesized and assembled during initial synthesis, acclimation processes, and recovery from photoinhibition. Some factors required for such processes are common between higher plants, algae and cyanobacteria, but others are not. For the true comprehension of PSI, it is important to understand the dynamic nature of PSI including assembly or degradation. In this chapter, “four Ws and one H” of the PSI assembly are summarized.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A0 A1 :

– Primary and secondary electron acceptors in PSI;

CTAB –:

Cetyltrimethylammonium bromide;

DPOR –:

Light-independent chlorophyll reductase;

FX FA, and FB :

– The terminal electron acceptors in PSI;

LHCI –:

Light harvesting complex of photosystem I;

LHCII –:

Light harvesting complex of photosystem II;

LPOR –:

Light-dependent protochlorophyllide reductase;

P700 –:

Primary electron donor of PSI;

PSI –:

Photosystem I;

PSII –:

Photosystem II;

SDS –:

Sodium dodecyl sulfate

References

  • Albus CA, Ruf S, Schöttler MA, Lein W, Kehr J, Bock R (2010) Y3IP1, a nucleus-encoded thylakoid protein, cooperates with the plastid-encoded Ycf3 protein in photosystem I assembly of tobacco and Arabidopsis. Plant Cell 22:2838–2855

    PubMed  CAS  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 443:58–63

    Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    PubMed  CAS  Google Scholar 

  • Andersen B, Scheller HV, Møller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin: NADP+ oxidoreductase. FEBS Lett 311:169–173

    PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Barber J, Nield J, Duncan J, Bibby TS (2006) Accessory chlorophyll proteins in cyanobacterial photosystem I. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 99–117

    Google Scholar 

  • Barneche F, Winter V, le Crèvecoeur M, Rochaix JD (2006) ATAB2 is a novel factor in the signaling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918

    PubMed  CAS  Google Scholar 

  • Bartsevich VV, Pakrasi HB (1997) Molecular identification of a novel protein that regulates biogenesis of photosystem I, a membrane protein complex. J Biol Chem 272:6382–6387

    PubMed  CAS  Google Scholar 

  • Bengis C, Nelson N (1975) Purification and properties of the photosystem I reaction center from Chloroplasts. J Biol Chem 250:2783–2788

    PubMed  CAS  Google Scholar 

  • Bengis C, Nelson N (1977) Subunit structure of chloroplast photosystem I reaction center. J Biol Chem 252:4564–4569

    PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) The crystal structure of plant photosystem I. Nature 426:630–635

    PubMed  CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J-D (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtiiare required for the accumulation of the photosystem I complex. EMBO J 16: 6095–6104

    Google Scholar 

  • Chauhan D, Folea IM, Jolley CC, Kouril R, Lubner CE, Lin S, Kolber D, Wolfe-Simon F, Golbeck JH, Boekema EJ, Fromm P (2011) A novel photosynthetic strategy for adaptation to low-iron aquatic environments. Biochemistry 50:686–692

    PubMed  CAS  Google Scholar 

  • Croce R, Morosinotto T, Basse R (2006) LHCI: the antenna complex of photosystem I in plants and green algae. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 119–137

    Google Scholar 

  • de Longevialle AF, Hendrickson L, Taylor NL, Delannoy E, Lurin C, Badger M, Millar AH, Small I (2008) The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J 56:157–168

    PubMed  Google Scholar 

  • Dühring U, Karradt A, Mikolajczyk S, Irrgang K-D, Wilde A (2005) Functional investigation on conserved chloroplast ORFs from the cyanobacterium Synechocystis sp. PCC 6803. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. International Society of Photosynthesis, pp 802–804

    Google Scholar 

  • Dühring U, Irrgang K-D, Lünser K, Kehr J, Wilde A (2006) Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. Biochim Biophys Acta 1757:3–11

    PubMed  Google Scholar 

  • Dühring U, Ossenbühl F, Wilde A (2007) Late assembly steps and dynamics of the cyanobacterial photosystem I. J Biol Chem 282:10915–10921

    PubMed  Google Scholar 

  • Fromme P, Grotjohann I (2006) Structural analysis of cyanobacterial photosystem I. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 47–69

    Google Scholar 

  • Fujimori T, Hihara Y, Sonoike K (2005) PsaK2 subunit in photosystem I is involved in state transition under high light condition in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 280:22191–22197

    PubMed  CAS  Google Scholar 

  • Fujita Y (1997) A study on the dynamic features of photosystem stoichiometry: accomplishments and problems for future studies. Photosynth Res 53:83–93

    CAS  Google Scholar 

  • Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685–701

    PubMed  CAS  Google Scholar 

  • Hatanaka H, Sonoike K, Hirano M, Katoh S (1993) Small subunits of photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? Biochim Biophys Acta 1141:45–51

    PubMed  CAS  Google Scholar 

  • Hayashida N, Matsubayashi T, Shinozaki K, Sugiura M, Inoue K, Hiyama T (1987) The gene for the 9 kd polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the photosystem I complex, in tobacco chloroplast DNA. Curr Genet 12:247–250

    PubMed  CAS  Google Scholar 

  • Hibino T, Lee BH, Rai AK, Ishikawa H, Kojima H, Tawada M, Shimoyama H, Takabe T (1996) Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica. Aust J Plant Physiol 23:321–330

    CAS  Google Scholar 

  • Hihara Y, Sonoike K (2001) Regulation, inhibition and protection of photosystem I. In: Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer, Dordrecht, pp 507–531

    Google Scholar 

  • Hihara Y, Sonoike K, Ikeuchi M (1998) A novel gene, pmgA, specifically regulates photosystem stoichiometry in the cyanobacterium Synechocystis species PCC 6803 in response to high light. Plant Physiol 117:1205–1216

    PubMed  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    PubMed  CAS  Google Scholar 

  • Hippler M, Rimbault B, Takahashi Y (2002) Photosynthetic complex assembly in Chlamydomonas reinhardtii. Protist 153:197–220

    PubMed  CAS  Google Scholar 

  • Høj PB, Svendsen I, Scheller HV, Møller BL (1987) Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of photosystem I. J Biol Chem 262:12676–12684

    PubMed  Google Scholar 

  • Hoshina S, Sue S, Kunishima N, Kamide K, Wada K, Itoh S (1989) Characterization and N-terminal sequence of a 5 kDa polypeptide in the photosystem I core complex from spinach. FEBS Lett 258:305–308

    PubMed  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1214

    PubMed  CAS  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F (1993) Exposure of the cyanobacterium Synechocystis PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079

    CAS  Google Scholar 

  • Jensen PE, Bassi R, Boekema E, Dekker J, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    PubMed  CAS  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    CAS  Google Scholar 

  • Kada S, Koike H, Satoh K, Hase T, Fujita Y (2003) Arrest of chlorophyll synthesis and differential decrease of photosystems I and II in a cyanobacterial mutant lacking light-independent protochlorophyllide reductase. Plant Mol Biol 51:225–235

    PubMed  CAS  Google Scholar 

  • Kanervo E, Suorsa M, Aro E-M (2007) Assembly of protein complexes in plastids. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Berlin, pp 283–313

    Google Scholar 

  • Khrouchtchova A, Hansson M, Paakkarinen V, Vainonen JP, Zhang S, Jensen PE, Scheller HV, Vener AV, Aro EM, Haldrup A (2005) A previously found thylakoid membrane protein of 14 kDa (TMP14) is a novel subunit of plant photosystem I and is designated PSI-P. FEBS Lett 579:4808–4812

    PubMed  CAS  Google Scholar 

  • Knoetzel J, Mant A, Haldrup A, Jensen PE, Scheller HV (2002) PSI-O, a new 10-kDa subunit of eukaryotic photosystem I. FEBS Lett 510:145–148

    PubMed  CAS  Google Scholar 

  • Kondo K, Geng XX, Katayama M, Ikeuchi M (2005) Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 84:269–273

    Google Scholar 

  • Kondo K, Ochaiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Syne­chocystis: a new Photosystem I antenna. Plant Physiol 144:1200–1210

    Google Scholar 

  • Kouril R, Yeremenko N, D’Haene S, Yakushuevska AE, Keegstra W, Matthijs HC, Dekker JP, Boekema EJ (2003) Photosystem I trimers from Synechocystis PCC 6803 lacking the PsaF and PsaJ subunits bind an IsiA ring of 17 units. Biochim Biophys Acta 1607:1–4

    PubMed  CAS  Google Scholar 

  • Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT, Saenger W (1993) Three-dimentional structure of system I of photosynthesis at 6 Å resolution. Nature 361:326–331

    Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT, Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 3:965–973

    PubMed  Google Scholar 

  • Kudoh H, Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541–548

    PubMed  CAS  Google Scholar 

  • Lezhneva L, Meurer J (2004) The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J 38:740–753

    PubMed  CAS  Google Scholar 

  • Mannan RM, Pakrasi HB, Sonoike K (1994) The PsaC protein is necessary for the stable association of the PsaD, PsaE, and PsaL proteins in the PSI complex: analysis of a cyanobacterial mutant strain. Arch Biochem Biophys 315:68–73

    PubMed  CAS  Google Scholar 

  • Manodori A, Melis A (1984) Photochemical apparatus organization in Anacystis nidulans (Cyanophyceae). Effect of CO2 concentration during cell growth. Plant Physiol 74:67–71

    PubMed  CAS  Google Scholar 

  • Minagawa J (2011) State transitions – the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    PubMed  CAS  Google Scholar 

  • Moseley JF, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21:6709–6720

    PubMed  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    PubMed  CAS  Google Scholar 

  • Murakami A, Kim SJ, Fujita Y (1997) Changes in photosystem stoichiometry in response to environmental conditions for cell growth observed with the cyanophyte Synechocystis PCC 6714. Plant Cell Physiol 38:392–397

    PubMed  CAS  Google Scholar 

  • Muramatsu M, Hihara Y (2003) Transcriptional regulation of genes encoding subunits of photosystem I during acclimation to high-light conditions in Synechocystis sp. PCC 6803. Planta 216:446–453

    PubMed  CAS  Google Scholar 

  • Muramatsu M, Hihara Y (2006) Characterization of high-light-responsive promoters of the psaAB genes in Synechocystis sp. PCC 6803. Plant Cell Physiol 47:878–890

    PubMed  CAS  Google Scholar 

  • Muramatsu M, Hihara Y (2007) Coordinated high-light response of genes encoding subunits of photosystem I is achieved by AT-rich upstream sequences in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 189:2750–2758

    PubMed  CAS  Google Scholar 

  • Muramatsu M, Hihara Y (2012) Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. J Plant Res 125:11–39

    Google Scholar 

  • Muramatsu M, Sonoike K, Hihara Y (2009) Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 155:989–996

    PubMed  CAS  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    PubMed  CAS  Google Scholar 

  • Naver H, Boudreau E, Rochaix J-D (2001) Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745

    PubMed  CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2006) Structure, function, and regulation of plant photosystem I. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 71–77

    Google Scholar 

  • Nickelsen J, Rengstl B, Stengel A, Schottkowski M, Soll J, Ankele E (2011) Biogenesis of the cyanobacterial thylakoid membrane system – an update. FEMS Microbiol Lett 315:1–5

    PubMed  CAS  Google Scholar 

  • Ohashi K, Murakami A, Tanaka A, Tsuji H, Fujita Y (1992) Developmental changes in amounts of thylakoid components in plastids of barley leaves. Plant Cell Physiol 33:371–377

    CAS  Google Scholar 

  • Ohnishi T, Takahashi Y (2009) Effects of site-directed mutations in the chloroplast-encoded ycf4 gene on PSI complex assembly in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 50:1750–1760

    Google Scholar 

  • Oh-oka H, Takahashi Y, Wada K, Matsubara H, Ohyama K, Ozeki H (1987) The 8 kDa polypeptide in photosystem I is a probable candidate of an iron-sulfur center protein coded by the chloroplast gene frxA. FEBS Lett 218:52–54

    CAS  Google Scholar 

  • Ozaki H, Sonoike K (2009) Quantitative analysis of the relationship between induction kinetics of chlorophyll fluorescence and function of genes in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 101:47–58

    PubMed  CAS  Google Scholar 

  • Ozaki H, Ikeuchi M, Ogawa T, Fukuzawa H, Sonoike K (2007) Large scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol 48:451–458

    PubMed  CAS  Google Scholar 

  • Ozawa S-I, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix J-D, Takahashi Y (2009) Biochemical and Structural studies of the large Ycf4-Photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. Plant Cell 21:2424–2442

    PubMed  CAS  Google Scholar 

  • Ozawa S-I, Onishi T, Takahashi Y (2010) Identification and characterization of an assembly intermediate subcomplex of Photosystem I in the green alga Chlamydomonas reinhardtii. J Biol Chem 285:20072–20079

    PubMed  CAS  Google Scholar 

  • Parrett KG, Mehari T, Warren PG, Golbeck JH (1989) Purification and properties of the intact P-700 and Fx-containing photosystem I core protein. Biochim Biophys Acta 973:324–332

    PubMed  CAS  Google Scholar 

  • Parrett KG, Mehari T, Golbeck JH (1990) Resolution and reconstitution of the cyanobacterial photosystem I complex. Biochim Biophys Acta 1015:341–352

    CAS  Google Scholar 

  • Peng L, Shimizu H, Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 283:34873–34879

    PubMed  CAS  Google Scholar 

  • Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624

    PubMed  CAS  Google Scholar 

  • Rochaix JD (2006) Genetic dissection of photosystem I assembly and turnover in eukaryotes. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 515–527

    Google Scholar 

  • Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102

    PubMed  CAS  Google Scholar 

  • Sandström S, Park Y-I, Öquist G, Gustafsson P (2001) CP43′, the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 74:431–437

    PubMed  Google Scholar 

  • Seino Y, Takahashi T, Hihara Y (2009) The response regulator RpaB binds to the upstream element of photosystem I genes to work for positive regulation under low-light conditions in Synechocystis sp. Strain PCC 6803. J Bacteriol 191:1581–1586

    PubMed  CAS  Google Scholar 

  • Shen G, Golbeck JH (2006) Assembly of the bound iron-sulfur clusters in photosystem I. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 529–547

    Google Scholar 

  • Shubin VV, Tsuprun VL, Bezsmertnaya IN, Karapetyan NV (1993) Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. FEBS Lett 334:79–82

    PubMed  CAS  Google Scholar 

  • Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    CAS  Google Scholar 

  • Sonoike K (1998) Various aspects of inhibition of photosynthesis under light/chilling stress: “photoinhibition at chilling temperatures” versus “Chilling damage in the light”. J Plant Res 111:121–129

    Google Scholar 

  • Sonoike K (2006) Photoinhibition and protection of photosystem I. In: Golbeck JH (ed) Photosystem I The light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 657–668

    Google Scholar 

  • Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    PubMed  CAS  Google Scholar 

  • Sonoike K, Katoh S (1986) Isolation of an intrinsic antenna chlorophyll a-protein from the photosystem I reaction center complex of the thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys 244:254–260

    PubMed  CAS  Google Scholar 

  • Sonoike K, Terashima I (1994) Mechanism of the photosystem I photoinhibition in leaves of Cucumis sativus L. Planta 194:287–293

    CAS  Google Scholar 

  • Sonoike K, Hatanaka H, Katoh S (1993) Small subunits of photosystem I reaction center complexes from Synechococcus elongatus. I. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta 1141:52–57

    PubMed  CAS  Google Scholar 

  • Sonoike K, Terashima I, Iwaki M, Itoh S (1995) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett 362:235–238

    PubMed  CAS  Google Scholar 

  • Sonoike K, Hihara Y, Ikeuchi M (2001) Physiological significance of the regulation of photosystem stoichiometry upon high light acclimation of Synechocystis sp. PCC 6803. Plant Cell Physiol 42:379–384

    PubMed  CAS  Google Scholar 

  • Srivastava R, Battchikova N, Norling B, Aro E-M (2006) Plasma membrane of Synechocystis PCC 6803: a heterogeneous distribution of membrane proteins. Arch Microbiol 185:238–243

    PubMed  CAS  Google Scholar 

  • Stöckel J, Bennewitz S, Hein P, Oelmüller R (2006) The evolutionarily conserved tetratrico peptide repeat protein Pale Yellow Green 7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol 141:870–878

    PubMed  Google Scholar 

  • Takahashi Y, Koike H, Katoh S (1982) Multiple forms of chlorophyll-protein complexes from a thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys 219:209–218

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Yasui T-A, Stauber EJ, Hippler M (2004) Comparison of the subunit compositions of the PSI-LHCI supercomplex and the LHCI in the green alga Chlamydomonas reinhardtii. Biochemistry 43:7816–7823

    PubMed  CAS  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:477–482

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nakai N, Muramatsu M, Hihara Y (2010) Role of multiple HLR1 sequences in the regulation of the dual promoters of the psaAB genes in Synechocystis sp. PCC 6803. J Bacteriol 192:4031–4036

    PubMed  CAS  Google Scholar 

  • Tan S, Wolfe GR, Cunningham FX Jr, Gantt E (1995) Decrease of polypeptides in the PSI antenna complex with increasing growth irradiance in the red alga Porphyridium cruentum. Photosynth Res 45:1–10

    CAS  Google Scholar 

  • Thornber JP, Alberte RS, Hunter FA, Shiozawa J-A, Kan K-S (1977) The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp Biol 28:132–148

    Google Scholar 

  • van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270

    PubMed  CAS  Google Scholar 

  • Vierling E, Alberte RS (1983) P700 chlorophyll a-protein. Plant Physiol 72:625–633

    PubMed  CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Hongu A, Nakazato M, Hiyama T (1985) Evidence that a chlorophyll a′ dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus. FEBS Lett 235:252–256

    Google Scholar 

  • Watanabe M, Kubota H, Wada H, Narikawa R, Ikeuchi M (2011) Novel supercomplex organization of Photosystem I in Anabaena and Cyanophora paradoxa. Plant Cell Physiol 52:162–168

    PubMed  CAS  Google Scholar 

  • Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R (2009) The role of Lhca complexes in the supramolecular organization of higher plant Photosystem I. J Biol Chem 284:7803–7810

    PubMed  CAS  Google Scholar 

  • Wilde A, Lünser K, Ossenbühl F, Nickelsen J, Börner T (2001) Characterization of the cyanobacterial ycf37: mutation decreases the photosystem I content. Biochem J 357:211–216

    PubMed  CAS  Google Scholar 

  • Wollman F-A, Bennoun P (1982) A new chlorophyll-protein complex related to photosystem I in Chlamydomonas reinhardtii. Biochim Biophys Acta 680:352–360

    CAS  Google Scholar 

  • Wollman F-A, Minai L, Nechushtai R (1999) The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim Biophys Acta 1141:21–85

    Google Scholar 

  • Wynn RM, Malkin R (1988) Interaction of plastocyanin with photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Biochemistry 27:5863–5869

    PubMed  CAS  Google Scholar 

  • Xu H, Vavilin D, Funk C, Vermaas W (2004) Multiple deletions of small Cab-like proteins in the cyanobacterium Synechocystis sp. PCC 6803: consequences for pigment biosynthesis and accumulation. J Biol Chem 279:27971–27979

    PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Andersson B, Pakrasi HB (1999) Subcellular localization of the BtpA protein in the cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 261:311–316

    PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448

    PubMed  CAS  Google Scholar 

  • Zanetti G, Merati G (1987) Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169:143–146

    PubMed  CAS  Google Scholar 

  • Zilber AL, Malkin R (1988) Ferredoxin cross-links to a 22 kD subunit of Photosystem I. Plant Physiol 88:810–814

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kintake Sonoike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hihara, Y., Sonoike, K. (2013). Organization and Assembly of Photosystem I. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_5

Download citation

Publish with us

Policies and ethics