Skip to main content

Defining Senescence and Death in Photosynthetic Tissues

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

Having clear concepts of senescence and aging, as well as the diverse related terminology, will foster these and related fields by facilitating communication within and between the academic constituencies that study them. Moreover, it will enable those working on photosynthetic tissues to contribute more to and draw more help from other fields ranging from gerontology to evolution. Senescence is a very important developmental process in the life cycle of organisms, especially photosynthetic organisms where it is often very dramatic. Senescence is commonly viewed as an increase in the probability that an organism will die as it ages chronologically (demographic view); however, plant physiologists/molecular biologists go a step further to define senescence as internal processes that actively cause death (physiological view). During senescence, a very wide range of changes (senescence syndrome) occur at the cell, organ and organismic levels; however, many are not causal and therefore not senescence per se. Although chloroplast degradation during senescence may not cause death, the decline in photosynthesis is very important and may limit agricultural/biomass productivity. Senescence is actively driven by the nucleus (necrogenic processes), but it also involves shutdown of life-supporting (biostatic) processes. Death, the endpoint of senescence, can be defined generally as the collapse of homeostasis. At the cell level, death appears to be the loss of the plasma membranes’ ability to retain/exclude molecules. Exactly how senescence brings the cells that comprise organs/organisms to death is not clear; however, programmed cell death processes participate in the end stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PCD:

– Programmed cell death

References

  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

    Article  PubMed  Google Scholar 

  • Artis DE, Miksche JP, Dhillon SS (1985) DNA, RNA and protein comparisons between nodulated and non-nodulated male-sterile and male-fertile genotypes of soybean (Glycine max L.). Am J Bot 72:560–567

    Article  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta Mol Cell Res 1793:1397–1403

    Article  CAS  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Malden

    Google Scholar 

  • Biswal UC, Biswal B (1988) Ultrastructural modifications and biochemical changes during senescence of chloroplasts. Int Rev Cytol 113:271–321

    Article  CAS  Google Scholar 

  • Bloom AJ, Chapin IFS, Mooney HA (1985) Resource limitation in plants – a economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Bose JC (1927) Plant autographs and their revelations. Longmans, Green, London

    Google Scholar 

  • Brady CJ (1988) Nucleic acid and protein synthesis. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 147–179

    Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Pyung OL, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver C (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Butler RD, Simon EW (1971) Ultrastructural aspects of senescence in plants. Adv Gerontol Res 3:73–129

    CAS  Google Scholar 

  • Comfort A (1964) Ageing. The biology of senescence. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding HM, Koh JLY, Toufighi K, Mostafavi S, Prinz J, Onge RPS, VanderSluis B, Makhnevych T, Vizeacouma FJ, Alizadeh S, Bahr S, Brost RL, Chen YQ, Cokol M, Deshpande R, Li ZJ, Lin ZY, Liang WD, Marback M, Paw J, Luis BJS, Shuteriqi E, Tong AHY, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong GQ, Zhu HW, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431

    Article  PubMed  CAS  Google Scholar 

  • de Graaf AO, van den Heuvel LP, Dijkman HB, de Abreu RA, Birkenkamp KU, de Witte T, van der Reijden BA, Smeitink JA, Jansen JH (2004) Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis. Exp Cell Res 299:533–540

    Article  PubMed  Google Scholar 

  • Doflein F (1919) Das Problem das Todes und der Unsterblichkeit bei den Pflanzen und Tieren. Gustav Fischer, Jena

    Google Scholar 

  • Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9:1951–1962

    PubMed  CAS  Google Scholar 

  • Gan S (ed) (2007) Senescence processes in plants. Blackwell, Ames

    Google Scholar 

  • Gepstein S (1988) Photosynthesis. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 85–109

    Google Scholar 

  • Golovina EA, Wolkers WF, Hoekstra FA (1997) Long-term stability of protein secondary structure in dry seeds. Comp Biochem Physiol A Physiol 117:343–348

    Article  Google Scholar 

  • Gray J (ed) (2004) Programmed cell death in plants. CRC Press, Boca Raton

    Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206

    Article  PubMed  CAS  Google Scholar 

  • Guiamét JJ, Teeri JA, Noodén LD (1990) Effects of nuclear and cytoplasmic genes altering chlorophyll loss on gas exchange during monocarpic senescence in soybean. Plant Cell Physiol 31:1123–1130

    Google Scholar 

  • Guiamét JJ, Schwartz E, Pichersky E, Noodén LD (1991) Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol 96:227–231

    Article  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    PubMed  CAS  Google Scholar 

  • Hillenmeyer ME, Fung E, Wildenhai J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365

    Article  PubMed  CAS  Google Scholar 

  • Hirt H, Shinozaki K (2004) Plant responses to abiotic stress. Springer, Berlin/New York

    Book  Google Scholar 

  • Iriti M, Faoro F (2008) Oxidative stress, the paradigm of ozone toxicity in plants and animals. Water Air Soil Pollut 187:285–301

    Article  CAS  Google Scholar 

  • Jones ML (2004) Changes in gene expression during senescence. In: Noodén LD (ed) Plant cell death processes. Academic Press/Elsevier, San Diego, pp 51–71

    Chapter  Google Scholar 

  • Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsk B, Melino G (2009) Classification of cell death: recommendations of the nomenclature commi­ttee on cell death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  • Krupinska K (2007) Fate and activity of plastids during senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 433–449

    Chapter  Google Scholar 

  • Leopold AC (1961) Senescence in plant development – the death of plants or plant parts may be of positive ecological or physiological value. Science 134:1727–1732

    Article  PubMed  CAS  Google Scholar 

  • Lumsden PJ, Millar AJ (eds) (1998) Biological rhythms and photoperiodism in plants. Bios Scientific, Oxford/Washington

    Google Scholar 

  • Luquez VMC, Sasal Y, Medrano M, Martín MI, Mujica M, Guiamét JJ (2006) Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis thaliana. J Exp Bot 57:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Mae T (2004) Leaf senescence and nitrogen metabolism. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 157–168

    Chapter  Google Scholar 

  • Mattoo AK, Handa AK (2004) Ethylene signalling in plant cell death. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 125–142

    Chapter  Google Scholar 

  • Mayak S, Halevy AH (1980) Flower senescence. In: Thimann KV (ed) Senescence in plants. CRC Press, Boca Baton, pp 131–156

    Google Scholar 

  • Medawar PB (1957) The uniqueness of the individual. Methuen, London

    Google Scholar 

  • Miller EC (1938) Plant physiology. McGraw-Hill, New York

    Google Scholar 

  • Molisch H (1938) The longevity of plants (Die Lebensdauer der Pflanze, 1928). Science Press, Lancaster

    Google Scholar 

  • Morgan PW, Drew MC (2004) Plant cell death and cell differentiation. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 19–36

    Chapter  Google Scholar 

  • Mothes K, Baudisch W (1958) Untersuchungen über die Reversibilität der Ausbleichung grüner Blätter. Flora 146:521–531

    CAS  Google Scholar 

  • Mudgett MB, Lowenson JD, Clarke S (1997) Protein repair-l-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds. Plant Physiol 115:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Peñuelas J (2003) Photo- and antioxidative protection during summer leaf senescence in Pistacia lentiscus L. Grown under mediterranean field conditions. Ann Bot 92:385–391

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP, Partridge L (2008) Toward a control theory analysis of aging. Annu Rev Biochem 77:777–798

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E (1999) Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp 66:69–73

    PubMed  CAS  Google Scholar 

  • Noble RD, Czarnota CD, Cappy JJ (1977) Morphological and physiological characteristics of an achlorophyllous mutant soybean variety sustained to maturation via grafting. Am J Bot 64:1042–1045

    Article  Google Scholar 

  • Noh YS, Quirino BF, Amasino RM (2004) Senescence and genetic engineering. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 91–105

    Chapter  Google Scholar 

  • Noodén LD (1980) Senescence in the whole plant. In: Thimann KV (ed) Senescence in plants. CRC Press, Boca Baton, pp 219–258

    Google Scholar 

  • Noodén LD (1984) Integration of soybean pod development and monocarpic senescence. Physiol Plant 62:273–284

    Google Scholar 

  • Noodén LD (1988a) The phenomena of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 1–50

    Google Scholar 

  • Noodén LD (1988b) Whole plant senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 391–439

    Google Scholar 

  • Noodén LD (1988c) Postlude and prospects. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 499–517

    Google Scholar 

  • Noodén LD (ed) (2004a) Plant cell death processes. Academic/Elsevier, San Diego

    Google Scholar 

  • Noodén LD (2004b) Introduction. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 1–18

    Chapter  Google Scholar 

  • Noodén LD, Leopold AC (1978) Phytohormones and the endogenous regulation of senescence and abscission. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: a comprehensive treatise, vol II. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 329–369

    Google Scholar 

  • Noodén LD, Leopold AC (eds) (1988) Senescence and aging in plants. Academic, San Diego

    Google Scholar 

  • Noodén LD, Letham DS (1993) Cytokinin metabolism and signaling in the soybean plant. Aust J Plant Physiol 20:639–653

    Article  Google Scholar 

  • Noodén LD, Mauk CS (1987) Changes in the mineral-composition of soybean xylem sap during monocarpic senescence and alterations by depodding. Physiol Plant 70:735–742

    Article  Google Scholar 

  • Noodén LD, Penney JP (2001) Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). J Exp Bot 52:2151–2159

    PubMed  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (2004) Whole plant senescence. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 227–244

    Chapter  Google Scholar 

  • O’Brien IE, Reutelingsperger CP, Holdaway KM (1997) Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry 29:28–33

    Article  PubMed  Google Scholar 

  • Obara K, Fukuda H (2004) Programmed cell death in xylem differentiation. In: Gray J (ed) Programmed cell death in plants. CRC Press, Boca Raton, pp 131–154

    Google Scholar 

  • Okatan Y, Kahanak GM, Noodén LD (1981) Characterization and kinetics of soybean maturation and monocarpic senescence. Physiol Plant 52:330–338

    Article  CAS  Google Scholar 

  • Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamét JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Pearl R, Miner JR (1935) Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms. Q Rev Biol 10:60–79

    Article  Google Scholar 

  • Petit C (2010) Life from scratch. Relaunching biology from the beginning. Sci News 178:22–26

    Google Scholar 

  • Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912

    Article  PubMed  CAS  Google Scholar 

  • Priestley DA (1986) Seed aging. Implications for seed storage and persistence in the soil. Cornell University Press, Ithaca

    Google Scholar 

  • Proskuryakov SY, Gabai VL, Konoplyannikov AG (2002) Necrosis is an active and controlled form of programmed cell death. Biochemistry-Moscow 67:387–408

    Article  PubMed  CAS  Google Scholar 

  • Roach DA (2004) Evolutionary and demographic approaches to the study of whole plant senescence. In: Noodén LD (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 331–347

    Chapter  Google Scholar 

  • Roberts EH (1988) Seed aging: the genome and its expression. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 465–498

    Google Scholar 

  • Rosen R (1978) Feedforwards and global system failure: general mechanism for senescence. J Theor Biol 74:579–590

    Article  PubMed  CAS  Google Scholar 

  • Stahl E (1909) Zur Biologie des Chlorophylls; Laubfarbe und Himmelslicht, Vergilbung und Etiolement. G. Fisher, Jena

    Google Scholar 

  • Thimann KV (ed) (1980) Senescence in plants. CRC Press, Boca Baton

    Google Scholar 

  • Thomas H, Donnison I (2000) Back from the brink: plant senescence and its reversibility. In: Bryant JA, Hughes SG, Garland JM (eds) Programmed cell death in animals and plants. BIOS Scientific Publishers, Oxford, pp 150–162

    Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111

    Article  CAS  Google Scholar 

  • Van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  • Van Staden J, Cook EL, Noodén LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 281–328

    Google Scholar 

  • Vaughan AT, Betti CJ, Villalobos MJ (2002) Surviving apoptosis. Apoptosis 7:173–177

    Article  PubMed  CAS  Google Scholar 

  • Vaupel JW, Baudisch A, Dolling M, Roach DA, Gampe J (2004) The case for negative senescence. Theor Popul Biol 65:339–351

    Article  PubMed  Google Scholar 

  • Vicencio JM, Galluzzi L, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S, Kroemer G (2008) Senescence, apoptosis or autophagy? Gerontology 54:92–99

    Article  PubMed  Google Scholar 

  • Vuosku J, Sarjala T, Jokela A, Sutela S, Saaskilahti M, Suorsa M, Laara E, Haggman H (2009) One tissue, two fates: different roles of megagametophyte cells during scots pine embryogenesis. J Exp Bot 60:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Wang LK, Zhou ZQ, Song XF, Li JW, Deng XY, Mei FZ (2008) Evidence of ceased programmed cell death in metaphloem sieve elements in the developing caryopsis of Triticum aestivum L. Protoplasma 234:87–96

    Article  PubMed  Google Scholar 

  • Woo HR, Lim PO, Nam HG, Noodén LD (2004) Genes that alter senescence. In: Noodén L (ed) Plant cell death processes. Academic/Elsevier, San Diego, pp 73–90

    Chapter  Google Scholar 

  • Wood LJ, Murray BJ, Okatan Y, Noodén LD (1986) Effect of petiole phloem disruption on starch and mineral distribution in senescing soybean leaves. Am J Bot 73:1377–1383

    Article  CAS  Google Scholar 

  • Yamori W, Kogami H, Yoshimura Y, Tsuji T, Masuzawa T (2006) A new application of the SFDA-staining method to assessment of freezing tolerance in leaves of alpine plants. Polar Biosci 20:82–91

    CAS  Google Scholar 

  • Zamski E, Schaffer AA (eds) (1996) Photoassimilate distribution in plants and crops. Marcel Dekker, New York

    Google Scholar 

  • Zapata JM, Guera A, Esteban-Carrasco A, Martín M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhf-defective tobacco. Cell Death Differ 12:1277–1284

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U, Laun T, Miao Y (2010) The complex regulation of wrky53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol 89:133–137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I am greatly indebted to John Megahan, Dept of Ecology and Evolutionary Biology, University of Michigan for his help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry D. Noodén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noodén, L.D. (2013). Defining Senescence and Death in Photosynthetic Tissues. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_13

Download citation

Publish with us

Policies and ethics