Skip to main content

Stem Cells in the Developing and Adult Nervous System

  • Chapter
  • First Online:
  • 2189 Accesses

Abstract

The fertilized egg is a totipotent stem cell that can produce all cell types of the organism, including the embryonic and the extraembryonic tissues. As development proceeds, cells lose their capacity to proliferate and differentiate into different cell types, and gain specialization. However, advances in stem cell biology have provided new insights into development and regenerative medicine. For example, neural stem/progenitor cells have been found to exist not only during embryonic development, but also in the adult nervous system of mammals. Newborn neurons in the adult brain integrate into pre-existing neural circuits and exhibit functional similarity to neurons born during development. Moreover, although development of an organism proceeds irreversibly from embryo to adult with cells differentiating progressively toward specialized cell types, somatic cells can be artificially reprogrammed to adopt a different cell fate, as exemplified by induced pluripotent stem cells (iPS cells) and induced neuronal cells (iN cells). Here, we summarize the current views of stem cell biology during embryogenesis and adult neurogenesis. We also discuss therapeutic potential of stem cells, focusing on retinal development and regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521

    Article  PubMed  CAS  Google Scholar 

  • Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337

    Article  PubMed  Google Scholar 

  • Akagi T, Haruta M, Akita J, Nishida A, Honda Y, Takahashi M (2003) Different characteristics of rat retinal progenitor cells from different culture periods. Neurosci Lett 341:213–216

    Article  PubMed  CAS  Google Scholar 

  • Altshuler D, Cepko C (1992) A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114:947–957

    PubMed  CAS  Google Scholar 

  • Andreazzoli M, Gestri G, Angeloni D, Menna E, Barsacchi G (1999) Role of Xrx1 in Xenopus eye and anterior brain development. Development 126:2451–2460

    PubMed  CAS  Google Scholar 

  • Aramant RB, Seiler MJ (2004) Progress in retinal sheet transplantation. Prog Retin Eye Res 23:475–494

    Article  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  PubMed  CAS  Google Scholar 

  • Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225

    Article  PubMed  CAS  Google Scholar 

  • Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  PubMed  CAS  Google Scholar 

  • Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227

    Article  PubMed  CAS  Google Scholar 

  • Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692

    PubMed  CAS  Google Scholar 

  • Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  PubMed  CAS  Google Scholar 

  • Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ et al (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4:e8152

    Article  PubMed  CAS  Google Scholar 

  • Cavodeassi F, Carreira-Barbosa F, Young RM, Concha ML, Allende ML, Houart C, Tada M, Wilson SW (2005) Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47:43–56

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10:153–163

    Article  PubMed  CAS  Google Scholar 

  • Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222

    PubMed  CAS  Google Scholar 

  • Chuang JC, Mathers PH, Raymond PA (1999) Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev 84:195–198

    Article  PubMed  CAS  Google Scholar 

  • Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I (2006) Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299:283–302

    Article  PubMed  CAS  Google Scholar 

  • Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS One 5:e12425

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    Article  PubMed  CAS  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Kozak CA, Cepko CL (1997a) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94:3088–3093

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Morrow EM, Cepko CL (1997b) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541

    Article  PubMed  CAS  Google Scholar 

  • Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN et al (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–357

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566

    Article  PubMed  CAS  Google Scholar 

  • Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871

    Article  PubMed  CAS  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    Article  PubMed  CAS  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  • Hansen DV, Rubenstein JL, Kriegstein AR (2011) Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70:645–660

    Article  PubMed  CAS  Google Scholar 

  • Harada C, Guo X, Namekata K, Kimura A, Nakamura K, Tanaka K, Parada LF, Harada T (2011) Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nat Commun 2:189

    Article  PubMed  CAS  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Haruta M, Kosaka M, Kanegae Y, Saito I, Inoue T, Kageyama R, Nishida A, Honda Y, Takahashi M (2001) Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat Neurosci 4:1163–1164

    Article  PubMed  CAS  Google Scholar 

  • Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, Suemori H, Nakatsuji N, Ide C, Honda Y, Takahashi M (2004) In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci 45:1020–1025

    Article  PubMed  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–281

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295

    Article  PubMed  CAS  Google Scholar 

  • Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    Article  PubMed  CAS  Google Scholar 

  • Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  CAS  Google Scholar 

  • Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581

    Article  PubMed  Google Scholar 

  • Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62

    Article  PubMed  CAS  Google Scholar 

  • Hyatt GA, Schmitt EA, Fadool JM, Dowling JE (1996) Retinoic acid alters photoreceptor development in vivo. Proc Natl Acad Sci U S A 93:13298–13303

    Article  PubMed  CAS  Google Scholar 

  • Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408

    Article  PubMed  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N et al (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 102:11331–11336

    Article  PubMed  CAS  Google Scholar 

  • Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6:e17084

    Article  PubMed  CAS  Google Scholar 

  • Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A 105:19508–19513

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  PubMed  CAS  Google Scholar 

  • Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675

    Article  PubMed  CAS  Google Scholar 

  • Lagutin O, Zhu CC, Furuta Y, Rowitch DH, McMahon AP, Oliver G (2001) Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Dev Dyn 221:342–349

    Article  PubMed  CAS  Google Scholar 

  • Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17:368–379

    Article  PubMed  CAS  Google Scholar 

  • Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27

    Article  PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    Article  PubMed  CAS  Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in crx-deficient mice. Cell Stem Cell 4:73–79

    Article  PubMed  CAS  Google Scholar 

  • Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M, Mastick GS, Brown NL (2005) Multiple requirements for Hes 1 during early eye formation. Dev Biol 284:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    Article  PubMed  CAS  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD et al (2011) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8:688–694

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  PubMed  CAS  Google Scholar 

  • Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660

    Article  PubMed  CAS  Google Scholar 

  • MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    Article  PubMed  CAS  Google Scholar 

  • Madsen TM, Kristjansen PE, Bolwig TG, Wortwein G (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119:635–642

    Article  PubMed  CAS  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  PubMed  CAS  Google Scholar 

  • Masse K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–607

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28:14282–14292

    Article  PubMed  CAS  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384

    Article  PubMed  CAS  Google Scholar 

  • Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16:233–238

    Article  PubMed  CAS  Google Scholar 

  • Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H et al (2003) Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci U S A 100:5828–5833

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:23–36

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434

    Article  PubMed  CAS  Google Scholar 

  • Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6:1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  • Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055

    PubMed  CAS  Google Scholar 

  • Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A 99:2020–2025

    Article  PubMed  CAS  Google Scholar 

  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101:13654–13659

    Article  PubMed  CAS  Google Scholar 

  • Osakada F (2011) Nuclear reprogramming to treat retinal degenerative diseases. Inflamm Regen 31:33–49

    Article  Google Scholar 

  • Osakada F, Takahashi M (2006) Retinal regeneration by somatic stem cells. Exp Med 24:256–262

    Google Scholar 

  • Osakada F, Takahashi M (2009) Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: targeting the Wnt pathway and transplantation therapy as strategies for retinal repair. J Pharmacol Sci 109:168–173

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Takahashi M (2011) Neural induction and patterning in mammalian pluripotent stem cells. CNS Neurol Disord Drug Targets 10:419–432

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Ikeda H, Sasai Y, Takahashi M (2009a) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4:811–824

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009b) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26:297–334

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–631

    Article  PubMed  CAS  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348

    Article  PubMed  CAS  Google Scholar 

  • Phanstiel DH, Brumbaugh J, Wenger CD, Tian S, Probasco MD, Bailey DJ, Swaney DL, Tervo MA, Bolin JM, Ruotti V et al (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods 8:821–827

    Article  PubMed  CAS  Google Scholar 

  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  PubMed  CAS  Google Scholar 

  • Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872

    Article  PubMed  CAS  Google Scholar 

  • Reh TA, Nagy T (1987) A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev Biol 122:471–482

    Article  PubMed  CAS  Google Scholar 

  • Reh TA, Nagy T, Gretton H (1987) Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330:68–71

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:333–336

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  • Sun G (2006) Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 289:243–252

    Article  PubMed  CAS  Google Scholar 

  • Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Palmer TD, Takahashi J, Gage FH (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12:340–348

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Zheng H, Xiao HL, She ZJ, Zhou GM (2007) Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina. Biochem Biophys Res Commun 363:347–354

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288–296

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86:5434–5438

    Article  PubMed  CAS  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  PubMed  CAS  Google Scholar 

  • Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:273–284

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52

    Article  PubMed  CAS  Google Scholar 

  • Young TL, Cepko CL (2004) A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41:867–879

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394

    Article  PubMed  CAS  Google Scholar 

  • Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130:5155–5167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yoshiki Sasai (RIKEN), Akinori Akaike (Kyoto University), Edward M. Callaway (The Salk Institute for Biological Studies), and E. J. Chichilnisky (The Salk Institute for Biological Studies) for their continued support and challenging discussions, and members of the Takahashi laboratory, the Sasai laboratory, the Akaike laboratory, the Callaway laboratory, and the Chichilnisky laboratory for stimulating discussions. We are grateful for support from the Leading Project for Realization of Regenerative Medicine (M.T.), Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (F.O.), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (F.O.), the Kanae Foundation for the Promotion of Medical Science (F.O.), the Uehara Memorial Foundation, and the Naito Foundation (F.O.). We apologize to those authors whose articles, although relevant to this subject, have not been cited in this review due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumitaka Osakada Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Osakada, F., Takahashi, M. (2013). Stem Cells in the Developing and Adult Nervous System. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_5

Download citation

Publish with us

Policies and ethics