Skip to main content

Vegetation and Land Use

  • Chapter
  • First Online:
The Soils of Italy

Part of the book series: World Soils Book Series ((WSBS))

  • 1181 Accesses

Abstract

The chapter describes the importance of vegetation in contributing to the pedogenesis physically, biologically and chemically. Analysis is performed of the different vegetation components and their relations to soil. A special emphasis is reserved to the forms of humus and to their classification. Land use is documented with the positive and negative effects on the pedogenesis. Several paragraphs deal with the influence of vegetation and land use on the soils of Italy. In the Alps altitude, climate and lithology determine the type of vegetation which in turn gives rise to the forms of humus which become fundamental pedogenetic factors. The Po plain presents a variety of soils and landscapes: from the old fluvio-glacial terraces with fragipan to the Po delta with sandy soils or with clay soils cracking during the summer. Other plains of Central and Southern Italy of minor surface but not of minor historical importance are presented. The Apennines range is described in its main features underlining the human influence across the centuries. From the Central Apennines to Sicily appear Andosols, that is, volcanic soils. Soils of the hills of Central Italy have been the base on which the Italian agriculture has developed in the past time advanced practices and techniques. Some considerations concern the difference between the past and the actual land uses. Southern Italy has different soils with the related land management: from the intensively cultivated Andosols of Campania to the stony terra rossa of the Murge with fallow. Sicily and Sardinia are described according to their natural vegetation and to their specificities: cereals cultivation on soil catena of the clay hills of Central Sicily and valuable Holm oak (Quercus ilex L.) and Cork oak (Quercus suber L.) of Sardinia. The chapter concludes with a pedological tour of the Italian coasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    What we call pedogenesis is a complex integration of several factors: lithology, climate and biotic organisms. This integration is taken as a paradigm in the modern approach to soil survey and cartography, being the rational base of the land regions and land systems methodology (Costantini et al. 2004). This methodology being integrated is useful not only for soil but also for other environmental components like vegetation (Dissegna et al. 1997 and Di Gennaro 2002). Vegetation, due its high variability in space and time, is not comprised in the set of parameters selected for the definition of the Soil Regions of Europe but the database of the European Soils makes possible the interpolation between the soilscapes and the natural ecosystems (Joint Research Centre 1998).

  2. 2.

    From a theoretical point of view during the climax phase, as much elements are taken from the soil as are returned and as much activity is produced as consumed. This climax condition is not stable, due to the natural and human events. Progression towards a new climax and regression to the previous one are phases registered in the soil profile contributing to its high variability (Sanesi 2000).

  3. 3.

    Plant assimilate more cations than anions. Hence, the production of biomass is associated to the release of protons in the soil. The reverse process takes course during the mineralisation of the organic matter which consume H+. An ecosystem is in a steady status when production and mineralisation of organic matter are equivalent. If the biomass produced is subtracted to the forest, the rate of acidification increases.

  4. 4.

    C/N is the ratio between the total organic carbon and the total nitrogen. This ratio provides a general assessment about the litter decomposition rate which is faster with low values.

  5. 5.

    The soils are classified according to the FAO–ISRIC–ISSS 2006.

  6. 6.

    The Larch has been accepted on the mountain prairies, because on the one hand, its wood is very appreciated for construction of the mountain houses (baite), on the other hand because during winter, there is less snow under the Larch, so during the spring, the snow melt faster under the Larch that has no needles and the grass can grow one week or two in advance with respect to the prairie without Larch.

  7. 7.

    Norway spruce has a superficial root system. Its nutrition is almost provided by the humus. After cuts of a Norway spruce stand, it is frequently observed regeneration of Norway spruce on decaying stumps (Giordano 2009).

  8. 8.

    Darwin (1859) recorded that on a parcel of heathland (Stafforshire) afforested with Scotch pine, the modifications of natural vegetation and fauna were greater than the differences of vegetation one could find passing from a type of soil to another completely different.

  9. 9.

    In that period had been dug the great Canale Cavour for providing the rice fields with water (see Corti et al. 2012 in this volume).

  10. 10.

    Terra rossa is an international denomination of a soil typical of warm Mediterranean environment on calcareous rocks.

  11. 11.

    Gariga is a poor steppe vegetation with xerophylous shrubs as Spartium, Cistus, Erica, Stipa and others. In extreme climatic situation take the place Chamaerops humilis, Asphodelus and thorny Asparagus.

  12. 12.

    A catena being a direct function of the topography minimises the role of other pedogenetic factors.

  13. 13.

    Holm oak is well adapted to different types of soil; nevertheless, the most suited are soils on marly sandstone and on volcanic tuffs (Umbric Andosols).

  14. 14.

    Cork oak has to be considered as the warmer facies of the Holm oak formation (Arrigoni 1968).

References

  • Adinolfi F, Sgroi F (2011) Come sta cambiando l’agricoltura del Sud. L’Informatore Agrario n° 38, pp 42–53

    Google Scholar 

  • Alinari E (1948) Contributo agli effetti della vegetazione sul terreno forestale nei nostri climi. L’Italia For. e Mont. III n° 4, pp 171–179

    Google Scholar 

  • Amatangelo G (2009) L’abete bianco nel Parco Nazionale della Maiella.Tesi di Laurea. Università degli Studi di Viterbo

    Google Scholar 

  • Antolini B, Di Bona L, Giordano G (1977). Utilizzazione del suolo. Carta della Montagna. n° 4 Trentino-Alto Adige. Geotecneco, Ministero Agricoltura e Foreste, vol II, pp 113–315

    Google Scholar 

  • Arrigoni V (1968) Fitoclimatologia della Sardegna. Webbia 23:1–100

    Google Scholar 

  • Aru A, Baldaccini P (1977) Utilizzazione del Suolo. In: (Geotecneco edit.) La carta della Montagna dell’Agricoltura e delle Foreste, vol 20th Sardegna. Ministero, pp 116–119

    Google Scholar 

  • Aru A, Baldaccini P, Delogu G, Dessena MA, Madrau S, Melis RT, Vacca A, Vacca S (1990) Carta dei Suoli della Sardegna. Regione Autonoma della Sardegna, Cagliari

    Google Scholar 

  • Aru A, Baldaccini P, Vacca A (1991) Nota illustrativa della Carta dei Suoli della Sardegna. Regione Autonoma della Sardegna. Università degli Studi di Cagliari, pp 5–83

    Google Scholar 

  • ASSAM (2006) Suoli e paesaggi delle Marche. Regione Marche, pp 1–303

    Google Scholar 

  • Bagnaresi U (1979) L’utilizzazione forestale dei terreni argillosi. Ed agricole, pp 93–128

    Google Scholar 

  • Berendse F (1994) Better decomposability: a neglected component of plant fitness. J Ecol 78

    Google Scholar 

  • Bianchi D, Zanchini E (2011) Il consumo di suolo in Italia. Annuario Legambiente, pp 1–256

    Google Scholar 

  • Bini C (2000) Suoli e paesaggi della fascia perilagunare dell’Alto Adriatico. In: Bini C (Edifir edit.) Suoli Ambiente e uomo, pp 53–64

    Google Scholar 

  • Bini C (2012) Geology and geomorphology. In: Costantini EAC (ed) Soils of Italy. Springer

    Google Scholar 

  • Bini C, Zampieri G (2001) I suoli dei colli Euganei. Regione Veneto. Azienda Regionale per i settori agricolo e forestale

    Google Scholar 

  • Biondi E (1986) La vegetazione del Monte Conero. Assessorato all’Urbanistica e all’Ambiente, Regione Marche, pp 1–92

    Google Scholar 

  • Boni I (2010) Consumo di suolo e perdita di fertilità. Meeting interdisciplinare. Milano 22 aprile

    Google Scholar 

  • Buol SW, Hole FD, McCracken RJ (1980) Soil genesis and classification. The Iowa State University Press, Ames, pp 1–390

    Google Scholar 

  • Buresti E, De Meo I, Falcioni S, Frattegiani M (1997) L’utilizzo del noce comune, del noce nero e del noce ibrido in arboricoltura da legno. Primi risultati di una prova comparativa in impianti misti di 8 anni di età. Ann Ist Sper Selv XXV–XXVI

    Google Scholar 

  • Cassi F, Giordano A (1990) Carta delle terre del Parco Nazionale della Calabria. Ministero Agricoltura e Foreste. Gestione Parchi e Riserve

    Google Scholar 

  • Cecconi CA, Ristori GG, Vidrich V (1989) Attacco dei minerali allumino-silicati da parte di acidi lichenici. Ann Acc It Sc For 38:294–307

    Google Scholar 

  • Certini G, Ugolini FC, Corti G, Agnelli A (1998) Early stages of podzolization under Corsican pine. Geoderma n° 83, pp 103–125

    Google Scholar 

  • Christian CS, Stewart GA (1968) Methodology of integrated survey. UNESCO, Paris, pp 233–280

    Google Scholar 

  • Corti C, Cocco S, Brecciaroli G, Agnelli A, Seddaiu G (2012) Soil management. In: Costantini EAC (ed) Soils of Italy. Springer

    Google Scholar 

  • Cortini Pedrotti C, Orsomando E, Pedrotti F, Sanesi G (1973) La vegetazione e i suoli del Pian Grande di Castelluccio di Norcia (Appennino centrale). Atti Ist Bot e Lab Crittog Univ di Pavia. Serie 6, vol IX

    Google Scholar 

  • Costantini EAC, Barbetti R (2008) Environmental and visual impact analysis of viticulture and olive tree cultivation in the province of Siena (Italy). Eur J Agron 28:412–426

    Article  Google Scholar 

  • Costantini EAC, L’Abate G (2007) Soils of Italy, problems and solutions. In: Proceedings of the conference “Status of mediterranean soil resources: actions needed to support their sustainable uses”. Tunisi, pp 165–186

    Google Scholar 

  • Costantini EAC, Righini G (2002) Processi degradativi dei suoli nelle regioni pedologiche italiane. In: Paolillo (ed) Problematiche del parametro suolo. Franco Angeli Urbanistica, pp 51–78

    Google Scholar 

  • Costantini EAC, Urbano F, L’Abate G (2004) Soil regions of Italy. www.soilmaps.it, pp 1–8

  • Costantini EAC, Barbetti R, Bucelli P, L’Abate G, Lelli L, Pellegrini S, Storchi P (2006a) Land peculiarities of the vine cultivation areas in the province of Siena (Italy) with indications concerning the viticultural and oenological results of Sangiovese vine. Ital J Geosci (Boll Soc Geo It) 6:147–159

    Google Scholar 

  • Costantini EAC, Pellegrini S, Vignozzi N, Barbetti R (2006b) Micromorphological characterization and monitoring of internal drainage in soils of vineyards and olive groves in central Italy. Geoderma 131:3–4l

    Article  Google Scholar 

  • D’Errico P (1959) Il miglioramento dei prati e pascoli naturali dell’Appennino Centrale su basi naturalistiche, economiche e pratiche. Ann Acc Ital Sci Forest VIII:85–138

    Google Scholar 

  • D’Ippolito A, Ferrari E, Iovino F, Nicolaci A, Veltri A (2011) Effetti dei rimboschimenti sui deflussi in un bacino di medie dimensioni. I rimboschimenti nel bacino del Cosciale ed Esaro. VIII Congr. Naz. SISEF Selvicoltura e conservazione del suolo: la sfida europea per una gestione territoriale integrata. Cosenza 4–7 Ott 2011

    Google Scholar 

  • Darwin CH (1859) L’origine delle specie per selezione naturale. Mondolibri, Milano (2003)

    Google Scholar 

  • Dazzi C (1996) Tassonomia del forest floor e caratteristiche di fertilità di suoli forestali sotto pino d’Aleppo e cedro dell’Atlante nei monti Sicani. Boll Ital Scienza del Suolo. Nuova Serie n° 8

    Google Scholar 

  • Dazzi C, Fatta Del Bosco G (2009) Ash-tree Manna (Fraxinus spp.). In: Costantini EAC (ed) Manual of methods for soil land evaluation. Science Publishers, pp 267–274

    Google Scholar 

  • Dazzi C, Lo Papa G (2012) Soil threats. In: Costantini EAC (ed) Soils of Italy. Springer

    Google Scholar 

  • Delecour F (1980) Essais de classification pratique des humus. Pédologie XXX n° 2

    Google Scholar 

  • Desideri A (1979) Pedogenesi attuale ed antica nel territorio di Sovana, Grosseto. Annali Acc Ital Sc For 28:329–366

    Google Scholar 

  • Di Bona L, Giordano G (1977) Utilizzazione del suolo. Carta della Montagna. n° 5 Regione Venero. Geotecneco, Ministero Agricoltura e Foreste, vol II, pp 115–238

    Google Scholar 

  • Di Gennaro A (2002) I sistemi di terre della Campania. Risorsa and Regione Campania, pp 1–64

    Google Scholar 

  • Di Gennaro A, Innamorato F, Capone S (2005) La grande trasformazione: land cover e land use in Campania. Estimo e Territorio LXVIII n° 3

    Google Scholar 

  • Dissegna M, Marchetti M, Pannicelli Casoni L (1997) I sistemi di terre nei paesaggi forestali del Veneto. Dipartimento per le Foreste e l’Economia Montana. Regione Veneto

    Google Scholar 

  • Donnici S, Serandrei-Barbero R, Bini C (2011) The caranto paleosol and its role in the early urbanization of Venice. Geoarcheology 26 n° 4:514–543

    Google Scholar 

  • Dowgiallo G (1998) I suoli forestali. In: Pignatti S (UTET) I suoli d’Italia, pp 73–103

    Google Scholar 

  • Duchaufour PH (1970) Précis de Pédologie. Masson, Paris, pp 1–481

    Google Scholar 

  • Duchaufour PH (1977) Pédologie. Pédogenèse et classification. Masson ed., Paris

    Google Scholar 

  • Duchaufour PH (1984) Abrégé de Pédologie. Masson ed., Paris, p 212

    Google Scholar 

  • Duchaufour PH (1989) Rôle des facteurs biochimiques et physiques du sol dans la nutrition des espèces forestières. Comptes Rendus de l’Accademie d’Agriculture de France 75, n° 5:3–10

    Google Scholar 

  • ERSA (2003) Suoli e paesaggi del Friuli Venezia Giulia. Agenzia Regionale per lo Sviluppo Rurale. Ufficio del Suolo, pp 1–510

    Google Scholar 

  • ERSAF (2004) Carta dei suoli della Lombardia. Regione Lombardia

    Google Scholar 

  • European Soil Bureau Network (2005) Soil atlas of Europe. European Commission, Brussels, pp 1–128

    Google Scholar 

  • Eurostat (2003) Land use/cover area frame statistical survey (LUCAS). Technical document n° 4. Instructions for surveyors

    Google Scholar 

  • FAO (1985) The ecological effects of Eucalyptus. Forestry Paper 59, Roma, pp 1–87

    Google Scholar 

  • FAO (1989) Revised legend of the soil map of the world. World soil resources report n° 60, Rome

    Google Scholar 

  • FAO–ISRIC–ISSS (2006) World reference base for soil resources. World soil resources report n° 103, Roma, pp 1–133

    Google Scholar 

  • Fierotti G (1977) Breve descrizione dei suoli. In: (Geotecneco edit) Carta della Montagna, vol 19th Sicilia. Ministero dell’Agricoltura e Foreste, pp 130–132

    Google Scholar 

  • Fierotti G (1988) Carta dei Suoli della Sicilia. Istituto di Agronomia, Università di Palermo e Assessorato Territorio Ambiente Regione Sicilia

    Google Scholar 

  • Fierotti G, Dazzi C, Raimondi S (1988) A report on the soil map of Sicily. Regione Siciliana and Università degli Studi di Palermo, Facoltà di Agraria, pp 1–19

    Google Scholar 

  • Galoux A (1971) Analisi, descrizione, classificazione e rappresentazione cartografica delle stazioni forestali. Scuola post-univesitaria di Economia Montana, Università di Padova

    Google Scholar 

  • Gambi G (1986) Le leccete. Monti e Boschi n° 1, pp 1–12

    Google Scholar 

  • Gasparini M (1955) Dispense di Agronomia Generale. Anno Universitario 1955–56. Facoltà di Agraria di Firenze, pp 1–207

    Google Scholar 

  • Giacobbe A (1962) L’ecologia dei rimboschimenti. Acc It Sc For XI:17–40

    Google Scholar 

  • Giordano A (1999) Pedologia. UTET, pp 1–349

    Google Scholar 

  • Giordano A (2002) Pedologia forestale e conservazione del suolo. UTET, pp 1–600

    Google Scholar 

  • Giordano A (2009) Land evaluation for some important Italian conifers. In: Costantini EAC (ed) Manual of methods for soil and land evaluation. Science Publishers, pp 495–517

    Google Scholar 

  • Giovagnotti C, Calandra R, Leccese A, Giovagnotti E (2003) I paesaggi pedologici e la carta dei suoli dell’Umbria. CCIAA Perugina, pp 1–191

    Google Scholar 

  • Green RN, Trowbridge RI, Klinka K (1993) Towards a taxonomic classification of humus forms Society of American Foresters. Bethesda, USA, pp 1–51

    Google Scholar 

  • Grillotti Di Giacomo MG (2000) Atlante tematico dell’agricoltura Italiana. Soc Geogr It, Roma, pp 1–431

    Google Scholar 

  • Gualdi V, Tartarino P, Greco R (2006) La conservazione e il miglioramento delle comunità forestali del Mezzogiorno peninsulare d’Italia interessate da fenomeni dinamici spontanei. www.aisf.it/AttiCNS/pdf/volume%202/2.39%Gualdi.pdf

  • Hall M (2005) Earth repair. A translatlantic history of environmental restoration. University of Virginia Press, pp 1–310

    Google Scholar 

  • Hartmann F (1970) Gli humus forestali. Cedam. Padova, pp 1–273

    Google Scholar 

  • Hofmann A (1960) Il faggio in Sicilia. Sondrio

    Google Scholar 

  • Iannelli P (1992) Un modo nuovo di fare agricoltura per la crescita dell’economia del sud. Informatore Agrario. Supplemento Agricoltura e impatto ambientale n° 1, pp 55–74

    Google Scholar 

  • Ignesti S, Paci M (1989) Studi sulla rinnovazione naturale dell’abete bianco nella foresta di Vallombrosa. Ann Acc It Sc For 38:541–584

    Google Scholar 

  • INFC (2005) Dossier telematico Inventario Nazionale delle Foreste e dei serbatoi di Carbonio

    Google Scholar 

  • IPLA (2007) Carta dei suoli del Piemonte. Note illustrative. Regione Piemonte, pp 1–128

    Google Scholar 

  • ISTAT (2011) 6° Censimento generale dell’Agricoltura. www.censimentoagricoltura.istat.it

  • Jabiol B, Brethes A, Ponge GF, Toutain F, Brun JJ (1995) L’humus sous toutes ses formes ENGREF, Nancy, pp 1–63

    Google Scholar 

  • Joint Research Centre, Istituto Sperimentale per lo Studio e la Difesa del Suolo, Space Application Institute (1998) Database Georeferenziale dei Suoli Europei. Manuale delle Procedure, Versione 1.1, pp 1–170

    Google Scholar 

  • Klinka K, Green RN, Trowbridge RL, Lowe LE (1981) Taxonomic classification of humus forms in ecosystems of British Columbia. Ministry of Forest and University of British Columbia, pp 1–54

    Google Scholar 

  • Kubiena WL (1952) Claves sistemàticas de suelos. Consejo Superior de Investifaciones Cientificas. Madrid, pp 1–370

    Google Scholar 

  • La Marmora A (1857) Voyage en Sardaigne. Torino

    Google Scholar 

  • Lieth H, Wittaker RM (1975) Primary productivity of the biosphere. Springer, Berlin

    Book  Google Scholar 

  • Lulli L, Bidini D, Lorenzoni P, Quantin P, Raglione M (1990) I suoli caposaldo dell’apparato vulcanico di Vico. Ann Ist Sper Studio Difesa suolo XVI:169–198

    Google Scholar 

  • Mancini F (1955) Delle terre brune d’Italia. Ann Acc It Sc For III:253–326

    Google Scholar 

  • Mancini F (1956) Contributo alla geo-pedologia della macchia di Migliarino. Atti Convegni Acc It Sc For 5:301–331

    CAS  Google Scholar 

  • Mancini F (1963) Recenti acquisizioni sulla genesi e sistematica dei suoli. Ann Acc It Sci For XII:269–312

    Google Scholar 

  • Mancini F (1991) Riflessioni sui suoli dell’Appennino, splendidi e delicate sistemi. Atti Convegni Acc Naz Lincei n° 90, pp 21–28

    Google Scholar 

  • Mancini F, Landi R, Bonciarelli F, Bagnaresi U, Manfredi E (1979) L’utilizzazione dei terreni argillosi dell’Appennino. Ed agricole, pp 1–143

    Google Scholar 

  • Marchisio C, Sbarbati L, Benciolini G, Pelle S (1994) I suoli del bacino del torrente Bitto di Gerola (SO). Regione Lombardia—CCE (EPOCH project), pp 1–88

    Google Scholar 

  • Marsh GP (1864) Man and nature. C. Scribner, New York, pp 1–560

    Google Scholar 

  • Mondino GP (1985) Ciclo evolutivo della vegetazione forestale nel Monferrato (Piemonte). Ann Acc It Sc For 34:227–246

    Google Scholar 

  • Mondino GP (1998) Carta della vegetazione forestale potenziale. Regione Toscana. Note illustrative, pp 1–30

    Google Scholar 

  • Mondino GP (2007) Flora e vegetazione del Piemonte. Regione Piemonte e IPLA, L’Artistica Editrice, pp 1–360

    Google Scholar 

  • Morra di Cella F (1996) Valutazione delle terre di ambienti marchigiani e rappresentazione di suoli mediante monoliti. Tesi di Laurea, Facoltà di Agraria, Università di Torino

    Google Scholar 

  • Noirfalise A (1987) Map of the natural vegetation of the member countries of the European Community and the Council of Europe. CEE, Brussels

    Google Scholar 

  • Olivari S (2009) Geologia e pedologia della Riserva Naturale Integrale di Sasso Fratino. In: Bottacci A (ed) La Riserva Integrale di Sasso Fratino 1959–2009 50 anni di conservazione della biodiversità. CFS/UTB Pratovecchio, pp 57–67

    Google Scholar 

  • Palmann H, Richard F, Bach R (1949) Űber die Zusammenarbeit von Bodekunde und Pflanzensociologie. 10th Congress IUFRO

    Google Scholar 

  • Panini T, Penzo M, (1983) Aspetti pedologici ed ambientali delle valli delle Tagliole e delle Pozze. Appennino Tosco-Emiliano. L’Italia Forest. E Mont.XXXVIII 2, pp 104–115

    Google Scholar 

  • Panini T, Bragato G, Gardin L, Lulli L, Primavera F (1991) Suoli e siti tartufigeni di un versante tipico della zona di San Miniato in Toscana. L’Italia For e Mont n° 5, pp 373–393

    Google Scholar 

  • Pavari A (1916) Studio preliminare sulla coltura delle specie forestali esotiche in Italia. Ann R Ist Sup Naz For 1

    Google Scholar 

  • Piemonte CSI (2008) Consumo di suolo. ebookbrowse.com/dati-csi-2008-consumo-suol

  • Pignatti S (1997) Ecologia vegetale. UTET, pp 1–527

    Google Scholar 

  • Pignatti S (1998) I boschi d’Italia. UTET, pp 1–677

    Google Scholar 

  • Piussi P (1998) Piantagioni di ontano nero in prati falciabili nel Friuli orientale SM Annali di San Michele (TN) n° 11, pp 1–421

    Google Scholar 

  • Povellato A, Longhitano D (2011) L’impatto del greening sull’agricoltura Italiana. Informatore Agrario 46, pp 19–22

    Google Scholar 

  • Previtali F (2000) Suoli delle Alpi italiane. In: Bini C (ed) Suoli, Ambiente, Uomo, pp 33–52

    Google Scholar 

  • Principi P (1961) I suoli d’Italia. REDA, Roma

    Google Scholar 

  • Puglisi S (1982) Quelques aspects de la R.T.M. en Basilicata. Rev For Franç N° 5

    Google Scholar 

  • Quinton JN (1996) Influence of plant roots on infiltration, water distribution and water use. Medalus III Project. 1st Annual Report, EU Brussels

    Google Scholar 

  • Rusco E et al (2007) Sustainable agriculture and soil conservation (SoCo project) Assam, Regione Marche. Eurosoils.jrc.ec.europa.eu/…/eurosoils…/EUR24131

  • Sanesi G (1962) Osservazioni sulle caratteristiche e l’evoluzione dei suoli della foresta di Campigna (Forlì). Ann Acc It Sc For V:97–137

    Google Scholar 

  • Sanesi G (2000) Elementi di pedologia. Calderini Edagricole, pp 1–386

    Google Scholar 

  • Sanfilippo E (1968) Is Arenas esempio di difesa contro l’erosione eolica. Cellulosa E Carta n° 9

    Google Scholar 

  • Serafini G (1879) Monografia sulle condizioni dell’agricoltura e degli agricoltori delle province delle Marche e dell’Umbria. Stab. Nobili. Pesaro, pp 1–145

    Google Scholar 

  • Sereni E (1979) Storia del paesaggio agrario italiano. Universale Laterza, p 484

    Google Scholar 

  • Servizio Cartografico Ufficio Regione Emilia-Romagna (1994) I suoli dell’Emilia-Romagna. Note illustrative, pp 1–383

    Google Scholar 

  • Smith WH (1985) Forest and air quality. J For 84–92

    Google Scholar 

  • Soil Conservation Society of America (1976) Resource conservation glossary. Ankeny, Iowa, pp 1–63

    Google Scholar 

  • Susmel L (1956) Condizioni eco-pedologiche e possibilità della rinnovazione naturale della foresta di Longarone L’Italia Forestale e Montana XI

    Google Scholar 

  • Susmel L (1957) Caratteri ecologici, vegetazionali e strutturali dei boschi di Longarone. Ann Acc It Sc For 6

    Google Scholar 

  • Susmel L (1970). Guida alla definizione dello stato normale per I principali boschi della regione Trentino-Alto Adige. Padova

    Google Scholar 

  • Susmel L, Viola F, Bassato G (1976) Ecologia della lecceta del Supramonte di Orgosolo. Ann Centro Econ Montana delle Venezie. Padova, pp 1–261

    Google Scholar 

  • Talamucci P (1991) Pascolo e bosco. L’Italia For e Mont XLVI n° 2, pp 88–117

    Google Scholar 

  • TCI (1957) L’Italia fisica. Touring Club Italiano. Milano, pp 1–320

    Google Scholar 

  • Terribile F, Basile A, De Mascellis R, di Gennaro A, Mele G, Vingiani S (2000) I suoli delle aree di crisi di Quindici e Sarno. Proprietà e comportamenti in relazione ai fenomeni franosi del 1998. Quaderni di Geologia Applicata, vol 7, n° 1, pp 59–80. www.pitagoragroup.it/pited/geologapplic2000.html

  • Tomaselli R (1977) Degradation of the Mediterranean maquis. In: MAB Technical Notes n° 2, UNESCO, pp 10–33

    Google Scholar 

  • Torri D, Borselli L (2000) Water erosion. In: Summer ME (ed) Handbook of soil science. New York, pp 171–194

    Google Scholar 

  • Toutain F (1987) Les humus forestiers biodynamique et modes de fonctionnement.Informations Sciences Naturelles. 15 C.R.D.P. Rennes, pp 1–49

    Google Scholar 

  • UNESCO–UNEP–FAO (1980) Ecosystèmes forestiers tropicaux Recherches sur les ressources naturelles n° XIV. Paris, pp 1–663

    Google Scholar 

  • USDA (1960) Soil survey staff. Soil classification. A comprehensive system. 7th Approx, pp 1–503

    Google Scholar 

  • USDA (1999) Soil taxonomy. Agricultural Handbook 436, 2nd edn. Washington

    Google Scholar 

  • Vacca A (2000) Effect of land use on forest floor and soil of a Quercus suber L. forest in Gallura (Sardinia, Italy). Land Degrad Dev II:167–180

    Google Scholar 

  • Van Breemen N (1998) Plant-induced soil changes: processes and feedbacks. Biogeochemistry, vol 42 n° 1–2. Kluwer Academic Publishers, pp 1–19

    Google Scholar 

  • Vos W (1991) Humus forms as site factors in landscape development. In: International symposium on advance in landscape ecology of Italy. Firenze

    Google Scholar 

  • Wilde SA (1958) Forest soils. The Ronald Press Company, New York, pp 1–537

    Google Scholar 

  • Wilde SA (1966) A new systematic terminology of forest humos layers. Soil Sci 101(5)

    Google Scholar 

  • Wilson MJ, Jones D (1985) Biological weathering of minerals. In: Proceedings of meeting clay minerals and iron oxides in soils SISS

    Google Scholar 

  • Zanella A, Tomasi M, De Siena C, Frizzera L, Jabiol B, Nicolini G (2001) Humus forestali. Edizioni Centro di Ecologia Alpina, Trento 319:1–321

    Google Scholar 

  • Zanella A, Jabiol B, Ponge GF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, English M (2011) A European morpho-functional classification of humus forms. Geoderma 164(3–4):138–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giordano, A. (2013). Vegetation and Land Use. In: Costantini, E., Dazzi, C. (eds) The Soils of Italy. World Soils Book Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5642-7_4

Download citation

Publish with us

Policies and ethics