Skip to main content

Planetary Rings

  • Reference work entry
  • First Online:
Book cover Planets, Stars and Stellar Systems

Abstract

Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10− 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system’s only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Laplace plane is the plane about which orbits precess. When the vertical motions of objects are damped by mutual collisions, material will settle into a ring centered on the Laplace plane.

  2. 2.

    Throughout this work, we will use the word “dust” to refer to μm-sized particles regardless of their composition.

  3. 3.

    The phase angle is formed by the Sun-object-observer lightpath. Dust-sized particles, having size comparable to the wavelength of visible light, tend to diffract light forward and are brightest at high phase angles. Larger objects tend to reflect light and are brightest at low phase angles.

  4. 4.

    As recently formalized by the IAU, a “division” is defined as a region between two lettered rings that contains a sheet of material, while a “gap” is a clear region within a lettered ring that may or may not contain one or more ringlets (http://planetarynames.wr.usgs.gov/append8.html).

  5. 5.

    Credit: G. H. Jones in JPL podcast, 6 March 2008 (http://www.jpl.nasa.gov/podcast/content.cfm?content=671)

  6. 6.

    Here, we refer to the inclination of the planet’s equatorial plane with respect to the line of sight from Earth.

  7. 7.

    along with the three planets of the HR 8799 system, announced at the same time

  8. 8.

    For brevity, this discussion is limited to inner Lindblad resonances and inner vertical resonances, where the disk is inward of the forcing moon. Nearly all known spiral waves in rings are of this kind, though Tiscareno et al. (2007) detected inwardly propagating spiral density waves excited by outer Lindblad resonances with Pan.

  9. 9.

    The azimuthal parameter m gives the number of spiral arms in the resonant wave pattern, while k + 1 is the “order” of the resonance, with first-order resonances generally being strongest, followed by second-order, etc.

  10. 10.

    The exception is the nodal resonance, labeled − 1:0, in which the mean motion of the ring particles is resonant with the forcing moon’s nodal precession \({\dot{\Omega}}\). This peculiar resonance has a negative pattern speed, and its bending wave propagates outward (Rosen and Lissauer 1988).

  11. 11.

    Moonlet wakes have little in common with self-gravity wakes (3.1.4), despite an unfortunate similarity in terminology.

  12. 12.

    The periodicity of this alignment was recalculated by Chavez (2009), using updated orbital data.

  13. 13.

    For Saturn’s Anthe and Methone arcs, as for Neptune’s Galatea arc, the circumferential ring is too faint to have been detected as yet but likely consists of material recently escaped from the arc-confining mechanism.

  14. 14.

    Because inclination resonances cannot be first-order (see, e.g., Sect. 10.3.3 of Murray and Dermott 1999), the CIR actually functions as an 86:84 resonance, which is why the number 86 appears here. For the CER discussed by Namouni and Porco (2002), the corotation sites would be twice as long.

References

  • Acuna, M. H., & Ness, N. F. 1976, The main magnetic field of Jupiter. J. Geophys. Res., 81, 2917–2922

    Article  ADS  Google Scholar 

  • Agarwal, M., Tiscareno, M. S., Hedman, M. M., & Burns, J. A. 2008, Dynamics of faint rings associated with Methone, Anthe and Pallene. AAS Div. Planet. Sci. Meet. Abstr., 40, 30.02

    ADS  Google Scholar 

  • Agarwal, M., Tiscareno, M. S., Hedman, M. M., & Burns, J. A. 2009, Dynamics of rings and arcs associated with three small moons of Saturn: Methone, Anthe and Pallene. AAS Div. Dyn. Astron. Meet. Abstr., 40, 3.05

    Google Scholar 

  • Albers, N., Sremčević, M., Colwell, J. E., & Esposito, L. W. 2012, Saturn’s F ring as seen by Cassini UVIS: kinematics and statistics. Icarus, 217, 367–388

    Article  ADS  Google Scholar 

  • Alexander, A. F. O. 1962, The Planet Saturn: A History of Observation, Theory and Discovery (London: Faber and Faber)

    Google Scholar 

  • Andrews, J. P. 1930, Theory of collision of spheres of soft metals. Phil. Mag. Ser. 7, 9, 593–610

    Article  MATH  Google Scholar 

  • Barnes, J. W., & Fortney, J. J. 2004, Transit detectability of ring systems around extrasolar giant planets. Astrophys. J., 616, 1193–1203

    Article  ADS  Google Scholar 

  • Beurle, K., Murray, C. D., Williams, G. A., Evans, M. W., Cooper, N. J., & Agnor, C. B. 2010, Direct evidence for gravitational instability and moonlet formation in Saturn’s rings. Astrophys. J. Lett., 718, L176–L180

    Article  ADS  Google Scholar 

  • Borderies, N., & Longaretti, P. Y. 1987, Description and behavior of streamlines in planetary rings. Icarus, 72, 593–603

    Article  ADS  Google Scholar 

  • Borderies-Rappaport, N., & Longaretti, P.-Y. 1994, Test particle motion around an oblate planet. Icarus, 107, 129–141

    Article  ADS  Google Scholar 

  • Borderies, N., Goldreich, P., & Tremaine, S. 1983, The dynamics of elliptical rings. Astron. J., 88, 1560–1568

    Article  ADS  Google Scholar 

  • Borderies, N., Goldreich, P., & Tremaine, S. 1984, Unsolved problems in planetary ring dynamics, in Planetary Rings, ed. R. Greenberg, & A. Brahic (Tucson: University of Arizona Press), 713–734

    Google Scholar 

  • Bosh, A. S., Olkin, C. B., French, R. G., & Nicholson, P. D. 2002, Saturn’s F ring: kinematics and particle sizes from stellar occultation studies, Icarus, 157, 57–75

    Article  ADS  Google Scholar 

  • Bridges, F. G., Hatzes, A., & Lin, D. N. C. 1984, Structure, stability and evolution of Saturn’s rings. Nature, 309, 333–335

    Article  ADS  Google Scholar 

  • Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, Hubble Space Telescope time-series photometry of the transiting planet of HD 209458. Astrophys. J., 552, 699–709

    Article  ADS  Google Scholar 

  • Burns, J. A., & Cuzzi, J. N. 2006, Our local astrophysical laboratory. Science, 312, 1753–1755

    Article  Google Scholar 

  • Burns, J. A., Lamy, P. L., & Soter, S. 1979, Radiation forces on small particles in the solar system. Icarus, 40, 1–48

    Article  ADS  Google Scholar 

  • Burns, J. A., Showalter, M. R., & Morfill, G. E. 1984, The ethereal rings of Jupiter and Saturn, in Planetary Rings, ed. R. Greenberg, & A. Brahic (Tucson: University of Arizona Press), 200–272

    Google Scholar 

  • Burns, J. A., Schaffer, L. E., Greenberg, R. J., & Showalter, M. R. 1985, Lorentz resonances and the structure of the Jovian ring. Nature, 316, 115–119

    Article  ADS  Google Scholar 

  • Burns, J. A., Showalter, M. R., Hamilton, D. P., Nicholson, P. D., de Pater, I., Ockert-Bell, M. E., & Thomas, P. C. 1999, The formation of Jupiter’s faint rings. Science, 284, 1146–1150

    Article  ADS  Google Scholar 

  • Burns, J. A., Hamilton, D. P., & Showalter, M. R. 2001, Dusty rings and circumplanetary dust: observations and simple physics, in Interplanetary Dust, ed. E. Grün, B. Å. S. Gustafson, S. Dermott, & H. Fechtig (Berlin: Springer), 641–725

    Google Scholar 

  • Burns, J. A., Simonelli, D. P., Showalter, M. R., Hamilton, D. P., Porco, C. D., Throop, H., & Esposito, L. W. 2004, Jupiter’s ring-moon system, in Jupiter: The Planet, Satellites and Magnetosphere, ed. F. Bagenal, T. E. Dowling, & W. B. McKinnon (Cambridge: Cambridge University Press), 241–262

    Google Scholar 

  • Canup, R. M. 2010, Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943–926

    Article  ADS  Google Scholar 

  • Canup, R. M., & Esposito, L. W. 1995, Accretion in the Roche zone: coexistence of rings and ring moons. Icarus, 113, 331–352

    Article  ADS  Google Scholar 

  • Canup, R. M., & Ward, W. R. 2002, Formation of the Galilean satellites: conditions of accretion. Astron. J., 124, 3404–3423

    Article  ADS  Google Scholar 

  • Canup, R. M., & Ward, W. R. 2006, A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834–839

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. 1969, Ellipsoidal Figures of Equilibrium (New Haven: Yale University Press)

    MATH  Google Scholar 

  • Charnoz, S., Porco, C. C., Déau, E., Brahic, A., Spitale, J. N., Bacques, G., & Baillie, K. 2005, Cassini discovers a kinematic spiral ring around Saturn. Science, 310, 1300–1304

    Article  ADS  Google Scholar 

  • Charnoz, S., Brahic, A., Thomas, P. C., & Porco, C. C. 2007, The equatorial ridges of Pan and Atlas: terminal accretionary ornaments? Science, 318, 1622–1624

    Article  ADS  Google Scholar 

  • Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R., & Hedman, M. M. 2009a, Origin and evolution of Saturn’s ring system, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 537–575

    Google Scholar 

  • Charnoz, S., Morbidelli, A., Dones, L., & Salmon, J. 2009b, Did Saturn’s rings form during the Late Heavy Bombardment? Icarus, 199, 413–428

    Article  ADS  Google Scholar 

  • Charnoz, S., Salmon, J., & Crida, A. 2010, The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature, 465, 752–754

    Article  ADS  Google Scholar 

  • Charnoz, S., et al. 2011, Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus, 216, 535–550

    Article  ADS  Google Scholar 

  • Chavez, C. E. 2009, Appearance of Saturn’s F ring azimuthal channels for the anti-alignment configuration between the ring and Prometheus. Icarus, 203, 233–237

    Article  ADS  Google Scholar 

  • Chiang, E. I., & Goldreich, P. 2000, Apse alignment of narrow eccentric planetary rings. Astrophys. J., 540, 1084–1090

    Article  ADS  Google Scholar 

  • Colombo, G., Goldreich, P., & Harris, A. W. 1976, Spiral structure as an explanation for the asymmetric brightness of Saturn’s A ring. Nature, 264, 344–345

    Article  ADS  Google Scholar 

  • Colwell, J. E., Esposito, L. W., & Sremčević, M. 2006, Self-gravity wakes in Saturn’s A ring measured by stellar occultations from Cassini. Geophys. Res. Lett., 33, L07201

    Article  ADS  Google Scholar 

  • Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., & McClintock, W. E. 2007, Self-gravity wakes and radial structure of Saturn’s B ring. Icarus, 190, 127–144

    Article  ADS  Google Scholar 

  • Colwell, J. E., et al. 2008, Ejecta from impacts at 0.2–2.3 m/s in low gravity. Icarus, 195, 908–917

    Article  ADS  Google Scholar 

  • Colwell, J. E., Cooney, J. H., Esposito, L. W., & Sremčević, M. 2009a, Density waves in Cassini UVIS stellar occultations. 1. The Cassini division. Icarus, 200, 574–580

    Article  Google Scholar 

  • Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., Murray, C. D., French, R. G., & Marouf, E. A. 2009b, The structure of Saturn’s rings, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 375–412

    Google Scholar 

  • Colwell, J. E., Jerousek, R. G., & Esposito, L. W. 2010, Sharp edges in Saturn’s rings: radial structure and longitudinal variability. AAS Div. Planet. Sci. Meet. Abstr., 42, 50.01

    ADS  Google Scholar 

  • Cooper, J. F., Eraker, J. H., & Simpson, J. A. 1985, The secondary radiation under Saturn’s A-B-C rings produced by cosmic ray interactions. J. Geophys. Res., 90, 3415–3427

    Article  ADS  Google Scholar 

  • Crida, A., Papaloizou, J. C. B., Rein, H., Charnoz, S., & Salmon, J. 2010, Migration of a moonlet in a ring of solid particles: theory and application to Saturn’s propellers. Astron. J., 140, 944–953

    Article  ADS  Google Scholar 

  • Cuzzi, J. N., & Burns, J. A. 1988, Charged particle depletion surrounding Saturn’s F ring: evidence for a moonlet belt? Icarus, 74, 284–324

    Article  ADS  Google Scholar 

  • Cuzzi, J. N., & Scargle, J. D. 1985, Wavy edges suggest moonlet in Encke’s gap. Astrophys. J., 292, 276–290

    Article  ADS  Google Scholar 

  • Cuzzi, J., Clark, R., Filacchione, G., French, R., Johnson, R., Marouf, E., & Spilker, L. 2009, Ring particle composition and size distribution, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 459–509

    Google Scholar 

  • Cuzzi, J. N., et al. 2010, An evolving view of Saturn’s dynamic rings. Science, 327, 1470–1475

    Article  ADS  Google Scholar 

  • Daubechies, I. 1992, Ten Lectures on Wavelets (Philadelphia: SIAM)

    Book  MATH  Google Scholar 

  • Dawson, R. I., French, R. G., & Showalter, M. R. 2010, Packed perturbers: short-term interactions among Uranus’ inner moons. AAS Div. Dyn. Astron. Meet. Abstr., 41, 8.07

    Google Scholar 

  • de Pater, I., Martin, S. C., & Showalter, M. R. 2004, Keck near-infrared observations of Saturn’s E and G rings during Earth’s ring plane crossing in August 1995. Icarus, 172, 446–454

    Article  ADS  Google Scholar 

  • de Pater, I., Gibbard, S. G., Chiang, E., Hammel, H. B., Macintosh, B., Marchis, F., Martin, S. C., Roe, H. G., & Showalter, M. 2005, The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of Courage. Icarus, 174, 263–272

    Article  ADS  Google Scholar 

  • de Pater, I., Hammel, H. B., Gibbard, S. G., & Showalter, M. R. 2006, New dust belts of Uranus: one ring, two ring, red ring, blue ring. Science, 312, 92–94

    Article  ADS  Google Scholar 

  • de Pater, I., Hammel, H. B., Showalter, M. R., & van Dam, M. A. 2007, The dark side of the rings of Uranus. Science, 317, 1888–1890

    Article  ADS  Google Scholar 

  • Denk, T., et al. 2010, Iapetus: unique surface properties and a global color dichotomy from Cassini imaging. Science, 327, 435–439

    Article  ADS  Google Scholar 

  • Dermott, S. F., & Murray, C. D. 1980, Origin of the eccentricity gradient and the apse alignment of the epsilon ring of Uranus. Icarus, 43, 338–349

    Article  ADS  Google Scholar 

  • Dilley, J., & Crawford, D. 1996, Mass dependence of energy loss in collisions of icy spheres: an experimental study. J. Geophys. Res., 101, 9267–9270

    Article  ADS  Google Scholar 

  • Dones, L., & Porco, C. C. 1989, Spiral density wakes in Saturn’s A ring? Bull. Am. Astron. Soc. 21, 929

    ADS  Google Scholar 

  • Dumas, C., Terrile, R. J., Smith, B. A., Schneider, G., & Becklin, E. E. 1999, Stability of Neptune’s ring arcs in question. Nature, 400, 733–735

    Article  ADS  Google Scholar 

  • Duncan, M. J., & Lissauer, J. J. 1997, Orbital stability of the Uranian satellite system. Icarus, 125, 1–12

    Article  ADS  Google Scholar 

  • Durda, D. D., Movshovitz, N., Richardson, D. C., Asphaug, E., Morgan, A., Rawlings, A. R., & Vest, C. 2011, Experimental determination of the coefficient of restitution for meter-scale granite spheres. Icarus, 211, 849–855

    Article  ADS  Google Scholar 

  • Durisen, R. H., Cramer, N. L., Murphy, B. W., Cuzzi, J. N., Mullikin, T. L., & Cederbloom, S. E. 1989, Ballistic transport in planetary ring systems due to particle erosion mechanisms I. Theory, numerical methods, and illustrative examples. Icarus, 80, 136–166

    Article  ADS  Google Scholar 

  • Durisen, R. H., Bode, P. W., Cuzzi, J. N., Cederbloom, S. E., & Murphy, B. W. 1992, Ballistic transport in planetary ring systems due to particle erosion mechanisms II. Theoretical models for Saturn’s A- and B-ring inner edges. Icarus, 100, 364–393

    Google Scholar 

  • Elliot, J. L., Dunham, E., & Mink, D. 1977, The rings of Uranus. Nature, 267, 328–330

    Article  ADS  Google Scholar 

  • Elliott, J. P., & Esposito, L. W. 2011, Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268–274

    Article  ADS  Google Scholar 

  • Esposito, L. W. 2006, Cassini observations and the history of Saturn’s rings. AGU Fall Meeting Abstracts, P23E-0110

    Google Scholar 

  • Esposito, L. W. 2010, Composition, structure, dynamics, and evolution of Saturn’s rings. Ann. Rev. Earth Planet. Sci., 38, 383–410

    Article  ADS  Google Scholar 

  • Esposito, L. W., Brahic, A., Burns, J. A., & Marouf, E. A. 1991, Particle properties and processes in Uranus’ rings, in Uranus, ed. J. T. Bergstralh, E. D. Miner, & M. S. Matthews (Tucson: University of Arizona Press), 410–465

    Google Scholar 

  • Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D., & Hedman, M. M. 2008, Moonlets and clumps in Saturn’s F ring. Icarus, 194, 278–289

    Article  ADS  Google Scholar 

  • Farmer, A. J., & Goldreich, P. 2005, Spoke formation under moving plasma clouds. Icarus, 179, 535–538

    Article  ADS  Google Scholar 

  • Fillius, R. W., McIlwain, C. E., & Mogro-Campero, A. 1975, Radiation belts of Jupiter: a second look. Science 188, 465–467

    Article  ADS  Google Scholar 

  • Foryta, D. W., & Sicardy, B. 1996, The dynamics of the neptunian Adams ring’s arcs. Icarus, 123, 129–167

    Article  ADS  Google Scholar 

  • Franklin, F. A., Cook, A. F., Barrey, R. T. F., Roff, C. A., Hunt, G. E., & de Rueda, H. B. 1987, Voyager observations of the azimuthal brightness variations in Saturn’s rings. Icarus, 69, 280–296

    Article  ADS  Google Scholar 

  • French, R. S., & Showalter, M. R. 2011, Cupid is doomed: an analysis of the stability of the inner Uranian satellites. AAS Div. Dyn. Astron. Meet. Abstr., 42, 6.02

    Google Scholar 

  • French, R. G., Nicholson, P. D., Porco, C. C., & Marouf, E. A. 1991, Dynamics and structure of the Uranian rings, in Uranus, ed. J. T. Bergstralh, E. D. Miner, & M. S. Matthews, (Tucson: University of Arizona Press), 327–409

    Google Scholar 

  • French, R. G., et al. 1993, Geometry of the Saturn system from the 3 July 1989 occultation of 28 SGR and Voyager observations. Icarus, 103, 163–214

    Article  ADS  Google Scholar 

  • Gaudi, B. S., Chang, H., & Han, C. 2003, Probing structures of distant extrasolar planets with microlensing. Astrophys. J., 586, 527–539

    Article  ADS  Google Scholar 

  • Giese, B., Denk, T., Neukum, G., Roatsch, T., Helfenstein, P., Thomas, P. C., Turtle, E. P., McEwen, A., & Porco, C. C. 2008, The topography of Iapetus’ leading side. Icarus, 193, 359–371

    Article  ADS  Google Scholar 

  • Goertz, C. K., & Morfill, G. 1983, A model for the formation of spokes in Saturn’s rings. Icarus, 53, 219–229

    Article  ADS  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1978a, The velocity dispersion in Saturn’s rings. Icarus, 34, 227–239

    Article  ADS  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1978b, The formation of the Cassini division in Saturn’s rings. Icarus, 34, 240–253

    Article  ADS  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1979a, Towards a theory for the Uranian rings. Nature, 277, 97–99

    Article  ADS  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1979b, Precession of the epsilon ring of Uranus. Astron. J., 84, 1638–1641

    Article  ADS  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1980, Disk-satellite interactions. Astrophys. J., 241, 425–441

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1981, The origin of the eccentricities of the rings of Uranus. Astrophys. J., 243, 1062–1075

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., & Tremaine, S. 1982, The dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20, 249–283

    Article  ADS  Google Scholar 

  • Goldreich, P., Tremaine, S., & Borderies, N. 1986, Towards a theory for Neptune’s arc rings. Astron. J., 92, 490–494

    Article  ADS  Google Scholar 

  • Goldreich, P., Murray, N., Longaretti, P. Y., & Banfield, D. 1989, Neptune’s story. Science, 245, 500–504

    Article  ADS  Google Scholar 

  • Hahn, J. M. 2007, The secular evolution of a close ring-satellite system: the excitation of spiral bending waves at a nearby gap edge. Astrophys. J., 665, 856–865

    Article  ADS  Google Scholar 

  • Hahn, J. M. 2008, The secular evolution of a close ring-satellite system: the excitation of spiral density waves at a nearby gap edge. Astrophys. J., 680, 1569–1581

    Article  ADS  Google Scholar 

  • Hahn, J. M., Spitale, J. N., & Porco, C. C. 2009, Dynamics of the sharp edges of broad planetary rings. Astrophys. J., 699, 686–710

    Article  ADS  Google Scholar 

  • Halme, V.-P., Salo, H., Sremčević, M., Albers, N., Schmidt, J., Seiss, M., & Spahn, F. 2010, Dynamical and photometric simulations of propeller features in Saturn’s A ring. AAS Div. Planet. Sci. Meet. Abstr., 42, 50.02

    ADS  Google Scholar 

  • Hamilton, D. P. 1996, The asymmetric time-variable rings of Mars. Icarus, 119, 153–172

    Article  ADS  Google Scholar 

  • Hamilton, D. P. 2006, The collisional cascade model for Saturn’s ring spokes. AAS Div. Planet. Sci. Meet. Abstr., 38, 51.04

    ADS  Google Scholar 

  • Hamilton, D. P., & Krüger, H. 2008, The sculpting of Jupiter’s gossamer rings by its shadow. Nature, 453, 72–75

    Article  ADS  Google Scholar 

  • Hänninen, J., & Porco, C. 1997, Collisional simulations of Neptune’s ring arcs. Icarus, 126, 1–27

    Article  ADS  Google Scholar 

  • Hatzes, A. P., Bridges, F. G., & Lin, D. N. C. 1988, Collisional properties of ice spheres at low impact velocities. Mon. Not. Roy. Astron. Soc., 231, 1091–1115

    Article  ADS  Google Scholar 

  • Hatzes, A. P., Bridges, F., Lin, D. N. C., & Sachtjen, S. 1991, Coagulation of particles in Saturn’s rings: measurements of the cohesive force of water frost. Icarus, 89, 113–121

    Article  ADS  Google Scholar 

  • Hedman, M. M., et al. 2005, Morphology, movements and models of ringlets in Saturn’s Encke gap. AAS Div. Planet. Sci. Meet. Abstr., 37, 64.01

    ADS  Google Scholar 

  • Hedman, M. M., Nicholson, P. D., Salo, H., Wallis, B. D., Buratti, B. J., Baines, K. H., Brown, R. H., & Clark, R. N. 2007a, Self-gravity wake structures in Saturn’s A ring revealed by Cassini VIMS. Astron. J., 133, 2624–2629

    Article  ADS  Google Scholar 

  • Hedman, M. M., Burns, J. A., Tiscareno, M. S., & Porco, C. C. 2007b, The heliotropic rings of Saturn. AAS Div. Planet. Sci. Meet. Abstr., 39, 10.09

    ADS  Google Scholar 

  • Hedman, M. M., et al. 2007c, Saturn’s dynamic D ring. Icarus, 188, 89–107

    Article  ADS  Google Scholar 

  • Hedman, M. M., Burns, J. A., Tiscareno, M. S., Porco, C. C., Jones, G. H., Roussos, E., Krupp, N., Paranicas, C., & Kempf, S. 2007d, The source of Saturn’s G ring. Science, 317, 653–656

    Article  ADS  Google Scholar 

  • Hedman, M. M., Nicholson, P. D., Showalter, M. R., Brown, R. H., Buratti, B. J., & Clark, R. N. 2009a, Spectral observations of the Enceladus plume with Cassini-VIMS. Astrophys. J., 693, 1749–1762

    Article  ADS  Google Scholar 

  • Hedman, M. M., Murray, C. D., Cooper, N. J., Tiscareno, M. S., Beurle, K., Evans, M. W., & Burns, J. A. 2009b, Three tenuous rings/arcs for three tiny moons. Icarus, 199, 378–386

    Article  ADS  Google Scholar 

  • Hedman, M. M., Burns, J. A., Tiscareno, M. S., & Porco, C. C. 2009c, Organizing some very tenuous things: resonant structures in Saturn’s faint rings. Icarus, 202, 260–279

    Article  ADS  Google Scholar 

  • Hedman, M. M., Nicholson, P. D., Baines, K. H., Buratti, B. J., Sotin, C., Clark, R. N., Brown, R. H., French, R. G., & Marouf, E. A. 2010a, The architecture of the Cassini division. Astron. J., 139, 228–251

    Article  ADS  Google Scholar 

  • Hedman, M. M., Burt, J. A., Burns, J. A., & Tiscareno, M. S. 2010b, The shape and dynamics of a heliotropic dusty ringlet in the Cassini division. Icarus, 210, 284–297

    Article  ADS  Google Scholar 

  • Hedman, M. M., Cooper, N. J., Murray, C. D., Beurle, K., Evans, M. W., Tiscareno, M. S., & Burns, J. A. 2010c, Aegaeon (Saturn LIII), a G-ring object. Icarus, 207, 433–447

    Article  ADS  Google Scholar 

  • Hedman, M. M., Nicholson, P. D., Filacchione, G., Capaccioni, F., Ciarnello, M., & Clark, R. N. 2011a, Correlations between the spectra and structure of Saturn’s main rings. AAS Div. Planet. Sci. Meet. Abstr., 43, 532

    ADS  Google Scholar 

  • Hedman, M. M., Burns, J. A., & Tiscareno, M. S. 2011b, Of horseshoes and heliotropes: the dynamics of dust in the Encke gap. AAS Div. Dyn. Astron. Meet. Abstr., 42, 8.02

    Google Scholar 

  • Hedman, M. M., Nicholson, P. D., Showalter, M. R., Brown, R. H., Buratti, B. J., Clark, R. N., Baines, K., & Sotin, C. 2011c, The Christiansen effect in Saturn’s narrow dusty rings and the spectral identification of clumps in the F ring. Icarus, 215, 695–711

    Article  ADS  Google Scholar 

  • Hedman, M. M., Burns, J. A., Evans, M. W., Tiscareno, M. S., & Porco, C. C. 2011d, Saturn’s curiously corrugated C ring. Science, 332, 708–711

    Article  ADS  Google Scholar 

  • Heißelmann, D., Blum, J., Fraser, H. J., & Wolling, K. 2010, Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus, 206, 424–430

    Article  ADS  Google Scholar 

  • Hill, J. R., & Mendis, D. A. 1981, On the braids and spokes in Saturn’s ring system. Moon Planet, 24, 431–436

    Article  ADS  Google Scholar 

  • Horányi, M., Burns, J. A., Hedman, M. M., Jones, G. H., & Kempf, S. 2009, Diffuse rings, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 511–536

    Google Scholar 

  • Ip, W.-H. 2006, On a ring origin of the equatorial ridge of Iapetus. Geophys. Res. Lett., 33, L16203

    Article  ADS  Google Scholar 

  • Jacobson, R. A., Campbell, J. K., Taylor, A. H., & Synnott, S. P. 1992, The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data. Astron. J., 103, 2068–2078

    Article  ADS  Google Scholar 

  • Jacobson, R. A., Spitale, J., Porco, C. C., Beurle, K., Cooper, N. J., Evans, M. W., & Murray, C. D. 2008, Revised orbits of Saturn’s small inner satellites. Astron. J., 135, 261–263

    Article  ADS  Google Scholar 

  • Jones, G. H., et al. 2006, Formation of Saturn’s ring spokes by lightning-induced electron beams. Geophys. Res. Lett., 33, L21202.

    Article  ADS  Google Scholar 

  • Jones, G. H., et al. 2008, The dust halo of Saturn’s largest icy moon, Rhea. Science, 319, 1380–1384

    Article  ADS  Google Scholar 

  • Julian, W. H., & Toomre, A. 1966, Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J., 146, 810–830

    Article  ADS  Google Scholar 

  • Kalas, P., Graham, J. R., & Clampin, M. 2005, A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature, 435, 1067–1070

    Article  ADS  Google Scholar 

  • Kalas, P., Graham, J. R., Chiang, E., Fitzgerald, M. P., Clampin, M., Kite, E. S., Stapelfeldt, K., Marois, C., & Krist, J. 2008, Optical images of an exosolar planet 25 light-years from Earth. Science, 322, 1345–1348

    Article  ADS  Google Scholar 

  • Kempf, S., Beckmann, U., & Schmidt, J. 2010, How the Enceladus dust plume feeds Saturn’s E ring. Icarus, 206, 446–457

    Article  ADS  Google Scholar 

  • Krivov, A. V., & Hamilton, D. P. 1997, Martian dust belts: waiting for discovery. Icarus, 128, 335–353

    Article  ADS  Google Scholar 

  • Laughlin, G., Korchagin, V., & Adams, F. C. 1997, Spiral mode saturation in self-gravitating disks. Astrophys. J., 477, 410–423

    Article  ADS  Google Scholar 

  • Levison, H. F., Walsh, K. J., Barr, A. C., & Dones, L. 2011, Ridge formation and de-spinning of Iapetus via an impact-generated satellite. Icarus, 214, 773–778

    Article  ADS  Google Scholar 

  • Lewis, M. C., & Stewart, G. R. 2009, Features around embedded moonlets in Saturn’s rings: the role of self-gravity and particle size distributions. Icarus, 199, 387–412

    Article  ADS  Google Scholar 

  • Lin, C. C., & Shu, F. H. 1964, On the spiral structure of disk galaxies. Astrophys. J., 140, 646–655

    Article  ADS  MathSciNet  Google Scholar 

  • Lissauer, J. J. 1985, Shepherding model for Neptune’s arc ring. Nature, 318, 544–545

    Article  ADS  Google Scholar 

  • Longaretti, P.-Y., & Borderies, N. 1991, Streamline formalism and ring orbit determination. Icarus, 94, 165–170 

    Article  ADS  Google Scholar 

  • Lubow, S. H. 2010, Eccentricity growth rates of tidally distorted discs. Mon. Not. Roy. Astron. Soc., 406, 2777–2786

    Article  ADS  Google Scholar 

  • Mamajek, E. E., Quillen, A. C., Pecaut, M. J., Moolekamp, F., Scott, E. L., Kenworthy, M. A., Collier Cameron, A., & Parley, N. R. 2012, Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astron. J., 143, 72

    Article  ADS  Google Scholar 

  • Matson, D. L., Castillo-Rogez, J. C., Schubert, G., Sotin, C., & McKinnon, W. B. 2009, The thermal evolution and internal structure of Saturn’s mid-sized icy satellites, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 577–612

    Google Scholar 

  • McGhee, C. A., French, R. G., Dones, L., Cuzzi, J. N., Salo, H. J., & Danos, R. 2005, HST observations of spokes in Saturn’s B ring. Icarus, 173, 508–521

    Article  ADS  Google Scholar 

  • Meyer, J., & Wisdom, J. 2007, Tidal heating in Enceladus. Icarus, 188, 535–539

    Article  ADS  Google Scholar 

  • Meyer, J., & Wisdom, J. 2008a, Tidal evolution of Mimas, Enceladus, & Dione. Icarus, 193, 213–223

    Article  ADS  Google Scholar 

  • Meyer, J., & Wisdom, J. 2008b, Episodic volcanism on Enceladus: application of the Ojakangas-Stevenson model. Icarus, 198, 178–180

    Article  ADS  Google Scholar 

  • Michikoshi, S., & Kokubo, E. 2011, Formation of a propeller structure by a moonlet in a dense planetary ring. Astrophys. J. Lett., 732, L23.

    Article  ADS  Google Scholar 

  • Millis, R. L., Wasserman, L. H., & Birch, P. V. 1977, Detection of rings around Uranus. Nature, 267, 330–331

    Article  ADS  Google Scholar 

  • Miner, E. D., Wessen, R. R., & Cuzzi, J. N. 2007, Planetary Ring Systems (Chichester: Springer Praxis)

    Google Scholar 

  • Mitchell, C. J., Horányi, M., Havnes, O., & Porco, C. C. 2006, Saturn’s spokes: lost and found. Science, 311, 1587–1589

    Article  ADS  Google Scholar 

  • Mitchell, C., Porco, C., Dones, L., & Spitale, J. 2012, The behavior of spokes in Saturn’s B ring. Icarus, submitted

    Google Scholar 

  • Morfill, G. E., & Thomas, H. M. 2005, Spoke formation under moving plasma clouds: The Goertz-Morfill model revisited. Icarus, 179, 539–542

    Article  ADS  Google Scholar 

  • Mosqueira, I., & Estrada, P. R. 2002, Apse alignment of the Uranian rings. Icarus, 158, 545–556

    Article  ADS  Google Scholar 

  • Mosqueira, I., & Estrada, P. R. 2003, Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus, 163, 198–231

    Article  ADS  Google Scholar 

  • Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge: Cambridge University Press)

    MATH  Google Scholar 

  • Murray, C. D., & Thompson, R. P. 1990, Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature, 348, 499–502

    Article  ADS  Google Scholar 

  • Murray, C. D., & Thompson, R. P. 1991, Erratum: orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature, 350, 90

    Article  ADS  Google Scholar 

  • Murray, C. D., Chavez, C., Beurle, K., Cooper, N., Evans, M. W., Burns, J. A., & Porco, C. C. 2005, How Prometheus creates structure in Saturn’s F ring. Nature, 437, 1326–1329

    Article  ADS  Google Scholar 

  • Murray, C. D., Beurle, K., Cooper, N. J., Evans, M. W., Williams, G. A., & Charnoz, S. 2008, The determination of the structure of Saturn’s F ring by nearby moonlets. Nature, 453, 739–744

    Article  ADS  Google Scholar 

  • Namouni, F., & Porco, C., 2002, The confinement of Neptune’s ring arcs by the moon Galatea. Nature, 417, 45–47

    Article  ADS  Google Scholar 

  • Nicholson, P. D., & Hedman, M. M. 2010, Self-gravity wake parameters in Saturn’s A and B rings. Icarus, 206, 410–423

    Article  ADS  Google Scholar 

  • Nicholson, P. D., Mosqueira, I., & Matthews, K. 1995, Stellar occultation observations of Neptune’s rings: 1984–1988. Icarus, 113, 295–330

    Article  ADS  Google Scholar 

  • Nicholson, P. D., et al. 2008, A close look at Saturn’s rings with Cassini VIMS. Icarus, 193, 182–212

    Article  ADS  Google Scholar 

  • Ockert-Bell, M. E., Burns, J. A., Daubar, I. J., Thomas, P. C., Veverka, J., Belton, M. J. S., & Klaasen, K. P. 1999, The structure of Jupiter’s ring system as revealed by the Galileo imaging experiment. Icarus, 138, 188–213

    Article  ADS  Google Scholar 

  • Ohta, Y., Taruya, A., & Suto, Y. 2009, Predicting photometric and spectroscopic signatures of rings around transiting extrasolar planets. Astrophys. J., 690, 1–12

    Article  ADS  Google Scholar 

  • Øieroset, M., Brain, D. A., Simpson, E., Mitchell, D. L., Phan, T. D., Halekas, J. S., Lin, R. P., & Acuña, M. H. 2010, Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER. Icarus, 206, 189–198

    Article  ADS  Google Scholar 

  • Orton, G. S., Baines, K. H., Cruikshank, D., Cuzzi, J. N., Krimigis, S. M., Miller, S., & Lellouch, E. 2009, Review of knowledge prior to the Cassini-Huygens mission and concurrent research, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 9–54

    Google Scholar 

  • Owen, T., Danielson, G. E., Cook, A. F., Hansen, C., Hall, V. L., & Duxbury, T. C. 1979, Jupiter’s rings, Nature, 281, 442–446

    Article  ADS  Google Scholar 

  • Pan, M., & Chiang, E. 2010, The propeller and the frog. Astrophys. J. Lett., 722, L178–L182

    Article  ADS  Google Scholar 

  • Papaloizou, J. C. B., Nelson, R. P., Kley, W., Masset, F. S., & Artymowicz, P. 2007, Disk-planet interactions during planet formation, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of Arizona Press), 655–668

    Google Scholar 

  • Perrine, R. P., Richardson, D. C., & Scheeres, D. J. 2011, A numerical model of cohesion in planetary rings. Icarus, 212, 719–735

    Article  ADS  Google Scholar 

  • Porco, C. C. 1991, An explanation for Neptune’s ring arcs. Science, 253, 995–1001

    Article  ADS  Google Scholar 

  • Porco, C. C., Nicholson, P. D., Cuzzi, J. N., Lissauer, J. J., & Esposito, L. W. 1995, Neptune’s ring system, in Neptune and Triton, ed. D. P. Cruikshank (Tucson: University of Arizona Press), 703–804

    Google Scholar 

  • Porco, C. C., et al. 2005a, Cassini imaging science: initial results on Phoebe and Iapetus. Science, 307, 1237–1242

    Article  ADS  Google Scholar 

  • Porco, C. C., et al. 2005b, Cassini imaging science: initial results on Saturn’s rings and small satellites. Science, 307, 1226–1236

    Article  ADS  Google Scholar 

  • Porco, C. C., Thomas, P. C., Weiss, J. W., & Richardson, D. C. 2007, Saturn’s small satellites: clues to their origins. Science, 318, 1602–1607

    Article  ADS  Google Scholar 

  • Porco, C. C., Weiss, J. W., Richardson, D. C., Dones, L., Quinn, T., & Throop, H. 2008, Simulations of the dynamical and light-scattering behavior of Saturn’s rings and the derivation of ring particle and disk properties. Astron. J., 136, 2172–2200

    Article  ADS  Google Scholar 

  • Rappaport, N. J., Longaretti, P., French, R. G., Marouf, E. A., & McGhee, C. A. 2009, A procedure to analyze nonlinear density waves in Saturn’s rings using several occultation profiles. Icarus, 199, 154–173

    Article  ADS  Google Scholar 

  • Rein, H., & Papaloizou, J. C. B. 2010, Stochastic orbital migration of small bodies in Saturn’s rings. Astron. Astrophys., 524, A22.

    Article  ADS  MATH  Google Scholar 

  • Renner, S., & Sicardy, B. 2006, Use of the geometric elements in numerical simulations. Cel. Mech. Dyn. Astron., 94, 237–248

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Richardson, D. C. 1994, Tree code simulations of planetary rings. Mon. Not. Roy. Astron. Soc., 269, 493–511

    Article  ADS  Google Scholar 

  • Richardson, J. E., Melosh, H. J., Lisse, C. M., & Carcich, B. 2007, A ballistics analysis of the Deep Impact ejecta plume: determining Comet Tempel 1’s gravity, mass, & density. Icarus, 190, 357–390

    Article  ADS  Google Scholar 

  • Robbins, S. J., Stewart, G. R., Lewis, M. C., Colwell, J. E., & Sremčević, M. 2010, Estimating the masses of Saturn’s A and B rings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 431–445

    Article  ADS  Google Scholar 

  • Rosen, P. A., & Lissauer, J. J. 1988, The Titan -1:0 nodal bending wave in Saturn’s ring C. Science, 241, 690–694

    Article  ADS  Google Scholar 

  • Roussos, E., Jones, G. H., Krupp, N., Paranicas, C., Mitchell, D. G., Krimigis, S. M., Woch, J., Lagg, A., & Khurana, K. 2008, Energetic electron signatures of Saturn’s smaller moons: evidence of an arc of material at Methone. Icarus, 193, 455–464

    Article  ADS  Google Scholar 

  • Salmon, J., Charnoz, S., Crida, A., & Brahic, A. 2010, Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 771–785

    Article  ADS  Google Scholar 

  • Salo, H. 1992, Gravitational wakes in Saturn’s rings. Nature, 359, 619–621

    Article  ADS  Google Scholar 

  • Salo, H. 1995, Simulations of dense planetary rings III. self-gravitating identical particles. Icarus, 117, 287–312

    Article  ADS  Google Scholar 

  • Salo, H., & Karjalainen, R. 2003, Photometric modeling of Saturn’s rings I. Monte Carlo method and the effect of nonzero volume filling factor. Icarus, 164, 428–460

    Google Scholar 

  • Salo, H., Karjalainen, R., & French, R. G. 2004, Photometric modeling of Saturn’s rings. II. Azimuthal asymmetry in reflected and transmitted light. Icarus, 170, 70–90

    Google Scholar 

  • Schenk, P. M., & McKinnon, W. B. 2009, Global color variations on Saturn’s icy satellites, and new evidence for Rhea’s ring. AAS Div. Planet. Sci. Meet. Abstr., 41, 3.03

    Google Scholar 

  • Schenk, P., Hamilton, D. P., Johnson, R. E., McKinnon, W. B., Paranicas, C., Schmidt, J., & Showalter, M. R. 2011, Plasma, plumes and rings: saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus, 211, 740–757

    Article  ADS  Google Scholar 

  • Schlichting, H. E., & Chang, P. 2011, Warm Saturns: on the nature of rings around extrasolar planets that reside inside the ice line. Astrophys. J., 734, 117

    Article  ADS  Google Scholar 

  • Schmidt, J., Brilliantov, N., Spahn, F., & Kempf, S. 2008, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature, 451, 685–688

    Article  ADS  Google Scholar 

  • Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., & Spahn, F. 2009, Dynamics of Saturn’s dense rings, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer-Verlag), 413–458

    Google Scholar 

  • Seager, S. (ed.), 2010, Exoplanets (Tucson: University of Arizona Press)

    Google Scholar 

  • Seal, D. A., & Buffington, B. B. 2009, The Cassini extended mission, in Saturn from Cassini-Huygens, ed. M. Dougherty, L. Esposito, & S. M. Krimigis (Dordrecht: Springer), 725–744

    Google Scholar 

  • Seiß, M., Spahn, F., Sremčević, M., & Salo, H. 2005, Structures induced by small moonlets in Saturn’s rings: implications for the Cassini mission. Geophys. Res. Lett., 32, L11205.

    Article  ADS  Google Scholar 

  • Showalter, M. R. 1991, Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke gap. Nature, 351, 709–713

    Article  ADS  Google Scholar 

  • Showalter, M. R. 2011, The rings of Uranus: shepherded or not? AAS Div. Planet. Sci. Meet. Abstr., 43, 1224

    ADS  Google Scholar 

  • Showalter, M. R., & Cuzzi, J. N. 1992, Physical properties of Neptune’s ring system. Bull. Am. Astron. Soc. 24, 1029

    ADS  Google Scholar 

  • Showalter, M. R., & Lissauer, J. J. 2006, The second ring-moon system of Uranus: discovery and dynamics. Science, 311, 973–977

    Article  ADS  Google Scholar 

  • Showalter, M. R., Cuzzi, J. N., Marouf, E. A., & Esposito, L. W. 1986, Satellite “wakes” and the orbit of the Encke Gap moonlet. Icarus, 66, 297–323

    Article  ADS  Google Scholar 

  • Showalter, M. R., Cuzzi, J. N., & Larson, S. M. 1991, Structure and particle properties of Saturn’s E ring. Icarus, 94, 451–473

    Article  ADS  Google Scholar 

  • Showalter, M. R., Hamilton, D. P., & Nicholson, P. D. 2006, A deep search for Martian dust rings and inner moons using the Hubble Space Telescope. Planet. Space Sci., 54, 844–854

    Article  ADS  Google Scholar 

  • Showalter, M. R., Cheng, A. F., Weaver, H. A., Stern, S. A., Spencer, J. R., Throop, H. B., Birath, E. M., Rose, D., & Moore, J. M. 2007, Clump detections and limits on moons in Jupiter’s ring system. Science, 318, 232–234

    Article  ADS  Google Scholar 

  • Showalter, M. R., French, R., Sfair, R., Argüelles, C., Pajuelo, M., Becerra, P., Hedman, M., & Nicholson, P. 2009, The brightening of Saturn’s F ring. AAS Div. Planet. Sci. Meet. Abstr., 41, 22.07

    ADS  Google Scholar 

  • Showalter, M. R., Hamilton, D. P., Stern, S. A., Weaver, H. A., Steffl, A. J., & Young, L. A. 2011a, New satellite of (134340) Pluto: S/2011 (134340) 1. Cent. Bur. Electron. Telegr., 2769, 1

    ADS  Google Scholar 

  • Showalter, M. R., Hedman, M. M., & Burns, J. A. 2011b, The impact of Comet Shoemaker-Levy 9 sends ripples through the rings of Jupiter. Science, 332, 711–713

    Article  ADS  Google Scholar 

  • Shu, F. H. 1984, Waves in planetary rings, in Planetary Rings, ed. R. Greenberg, & A. Brahic (Tucson: University of Arizona Press), 513–561

    Google Scholar 

  • Sicardy, B., Roddier, F., Roddier, C., Perozzi, E., Graves, J. E., Guyon, O., & Northcott, M. J. 1999, Images of Neptune’s ring arcs obtained by a ground-based telescope. Nature, 400, 731–733

    Article  ADS  Google Scholar 

  • Smith, B. A., et al. 1982, A new look at the Saturn system - The Voyager 2 images. Science, 215, 504–537

    Article  ADS  Google Scholar 

  • Soter, S. 1974, Remarks on the origin of Iapetus’ photometric asymmetry. IAU Colloq., 28

    Google Scholar 

  • Spahn, F., & Sremčević, M. 2000, Density patterns induced by small moonlets in Saturn’s rings? Astron. Astrophys., 358, 368–372

    ADS  Google Scholar 

  • Spencer, J. R., & Denk, T. 2010, Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science, 327, 432–435

    Article  ADS  Google Scholar 

  • Spitale, J., & Porco, C. C. 2006, Shapes and kinematics of eccentric features in Saturn’s C ring and Cassini division. AAS Div. Dyn. Astron. Meet. Abstr., 37, 7.02

    Google Scholar 

  • Spitale, J. N., & Porco, C. C. 2009, Time variability in the outer edge of Saturn’s A-ring revealed by Cassini imaging. Astron. J., 138, 1520–1528

    Article  ADS  Google Scholar 

  • Spitale, J. N., & Porco, C. C. 2010, Detection of free unstable modes and massive bodies in Saturn’s outer B ring. Astron. J., 140, 1747–1757

    Article  ADS  Google Scholar 

  • Spitale, J. N., Porco, C. C., & Colwell, J. 2008, An inclined saturnian ringlet at 1.954 Rs. AAS Div. Planet. Sci. Meet. Abstr., 40, 21.02

    Google Scholar 

  • Sremčević, M., Spahn, F., & Duschl, W. J. 2002, Density structures in perturbed thin cold discs. Mon. Not. Roy. Astron. Soc., 337, 1139–1152

    Article  ADS  Google Scholar 

  • Sremčević, M., Schmidt, J., Salo, H., Seiß, M., Spahn, F., & Albers, N. 2007, A belt of moonlets in Saturn’s A ring. Nature, 449, 1019–1021

    Article  ADS  Google Scholar 

  • Sremčević, M., Colwell, J. E., & Esposito, L. W. 2009, Small-scale ring structure observed in Cassini UVIS occultations. AGU Fall Meeting Abstracts, P54A–05

    Google Scholar 

  • Steffl, A. J., & Stern, S. A. 2007, First constraints on rings in the Pluto system. Astron. J., 133, 1485–1489

    Article  ADS  Google Scholar 

  • Stern, S. A., Weaver, H. A., Steffl, A. J., Mutchler, M. J., Merline, W. J., Buie, M. W., Young, E. F., Young, L. A., & Spencer, J. R. 2006, A giant impact origin for Pluto’s small moons and satellite multiplicity in the Kuiper belt. Nature, 439, 946–948

    Article  ADS  Google Scholar 

  • Supulver, K. D., Bridges, F. G., & Lin, D. N. C. 1995, The coefficient of restitution of ice particles in glancing collisions: experimental results for unfrosted surfaces. Icarus, 113, 188–199

    Article  ADS  Google Scholar 

  • Tamayo, D., Burns, J. A., Hamilton, D. P., & Hedman, M. M. 2011, Finding the trigger to Iapetus’ odd global albedo pattern: dynamics of dust from Saturn’s irregular satellites. Icarus, 215, 260–278

    Article  ADS  Google Scholar 

  • Thomson, F. S., Marouf, E. A., Tyler, G. L., French, R. G., & Rappoport, N. J. 2007, Periodic microstructure in Saturn’s rings A and B. Geophys. Res. Lett., 34, L24203

    Article  ADS  Google Scholar 

  • Tiscareno, M. S. 2012, A modified “Type I migration” model for propeller moons in Saturn’s rings. Planet. Space Sci., in press (arXiv:1206.4942)

    Google Scholar 

  • Tiscareno, M. S., Burns, J. A., Hedman, M. M., Spitale, J. N., Porco, C. C., Murray, C. D., & Cassini Imaging Team, 2005, Wavy edges and other disturbances in Saturn’s Encke and Keeler gaps. AAS Div. Planet. Sci. Meet. Abstr., 37, 64.02

    ADS  Google Scholar 

  • Tiscareno, M. S., Burns, J. A., Hedman, M. M., Porco, C. C., Weiss, J. W., Dones, L., Richardson, D. C., & Murray, C. D. 2006a, 100-metre-diameter moonlets in Saturn’s A ring from observations of “propeller” structures. Nature, 440, 648–650

    Article  ADS  Google Scholar 

  • Tiscareno, M. S., Nicholson, P. D., Burns, J. A., Hedman, M. M., & Porco, C. C. 2006b, Unravelling temporal variability in Saturn’s spiral density waves: results and predictions. Astrophys. J. Lett., 651, L65–L68

    Article  ADS  Google Scholar 

  • Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., & Porco, C. C. 2007, Cassini imaging of Saturn’s rings II. a wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14–34

    Article  ADS  Google Scholar 

  • Tiscareno, M. S., Burns, J. A., Hedman, M. M., & Porco, C. C. 2008, The population of propellers in Saturn’s A ring. Astron. J., 135, 1083–1091

    Article  ADS  Google Scholar 

  • Tiscareno, M. S., Hedman, M. M., Burns, J. A., Weiss, J. W., & Porco, C. C. 2009a, Saturn’s A ring has no inner edge. AAS Div. Planet. Sci. Meet. Abstr., 41, 25.04

    ADS  Google Scholar 

  • Tiscareno, M. S., Burns, J. A., Hedman, M. M., DiNino, D., Porco, C. C., Beurle, K., & Evans, M. W. 2009b, Observations of ejecta clouds produced by impacts onto Saturn’s rings. AGU Fall Meeting Abstracts, P54A–08

    Google Scholar 

  • Tiscareno, M. S., Perrine, R. P., Richardson, D. C., Hedman, M. M., Weiss, J. W., Porco, C. C., & Burns, J. A. 2010a, An analytic parameterization of self-gravity wakes in Saturn’s rings. Astron. J., 139, 492–503

    Article  ADS  Google Scholar 

  • Tiscareno, M. S., Burns, J. A., Cuzzi, J. N., & Hedman, M. M. 2010b, Cassini imaging search rules out rings around Rhea. Geophys. Res. Lett., 37, L14205

    Article  ADS  Google Scholar 

  • Tiscareno, M. S., et al. 2010c, Physical characteristics and non-keplerian orbital motion of “propeller” moons embedded in Saturn’s rings. Astrophys. J. Lett., 718, L92–L96

    Article  ADS  Google Scholar 

  • Torrence, C., & Compo, G. P. 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 79, 61–78 http://atoc.colorado.edu/research/wavelets/

  • Torrey, P. A., Tiscareno, M. S., Burns, J. A., & Porco, C. C. 2008, Mapping complexity: the wavy edges of the Encke and Keeler gaps in Saturn’s rings. AAS Div. Dyn. Astron. Meet. Abstr., 39, 15.19

    Google Scholar 

  • Van Helden, A. 1984, Saturn through the telescope: a brief historical survey, in Saturn, ed. T. Gehrels, & M. S. Matthews (Tucson: University of Arizona Press), 23–43

    Google Scholar 

  • Verbiscer, A. J., Skrutskie, M. F., & Hamilton, D. P. 2009, Saturn’s largest ring. Nature, 461, 1098–1100

    Article  ADS  Google Scholar 

  • Ward, W. R. 1986, Density waves in the solar nebula: differential Lindblad torque. Icarus, 67, 164–180

    Article  ADS  Google Scholar 

  • Ward, W. R. 1997, Survival of planetary systems. Astrophys. J. Lett., 482, L211–L214

    Article  ADS  Google Scholar 

  • Weiss, J. W. 2005, The physics of unconstrained edges in planetary rings. Ph.D. Thesis, University of Colorado

    Google Scholar 

  • Weiss, J. W., Porco, C. C., & Tiscareno, M. S. 2009, Ring edge waves and the masses of nearby satellites. Astron. J., 138, 272–286

    Article  ADS  Google Scholar 

  • Winter, O. C., Mourão, D. C., Giuliatti Winter, S. M., Spahn, F., & da Cruz, C. 2007, Moonlets wandering on a leash-ring. Mon. Not. Roy. Astron. Soc., 380, L54–L57

    Article  ADS  Google Scholar 

  • Wisdom, J., & Holman, M. 1991, Symplectic maps for the n-body problem. Astron. J., 102, 1528–1538

    Article  ADS  Google Scholar 

  • Wisdom, J., & Tremaine, S. 1988, Local simulations of planetary rings. Astron. J., 95, 925–940

    Article  ADS  Google Scholar 

  • Zebker, H. A., Marouf, E. A., & Tyler, G. L. 1985, Saturn’s rings: particle size distributions for thin layer model. Icarus, 64, 531–548

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank Mark Showalter, Joe Burns, Josh Colwell, Jeff Cuzzi, Jonathan Fortney, Doug Hamilton, Matt Hedman, Doug Lin, Phil Nicholson, and John Weiss for helpful conversations. I additionally thank Robin Canup, John Cooper, Estelle Deau, Larry Esposito, and Rob French for valuable comments on the manuscript, and Hanno Rein for help in creating Fig7-3. I acknowledge funding from NASA Outer Planets Research (NNX10AP94G), NASA Cassini Data Analysis (NNX08AQ72G and NNX10AG67G), and the Cassini Project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tiscareno, M.S. (2013). Planetary Rings. In: Oswalt, T.D., French, L.M., Kalas, P. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5606-9_7

Download citation

Publish with us

Policies and ethics