Skip to main content
  • 2328 Accesses

Abstract

Quantum mechanics rests on the centuries-long development of the theory of structure and stability of matter. The development of quantum mechanics is supposed to have started with the concept of atom, and further progressed in parallel with the development of chemistry, mechanics, optics and electrodynamics. As long ago as at the end of the 19th century, the atoms were already considered as vibrating systems composed of positive and negative charged particles. However, the pure electromagnetic theory of atom stability turned out to be inconsistent, and the key ideas came from the thermodynamics of radiation.

The fundamental principles of quantum mechanics can be perceived only from systematic analysis of empirical observations and their theoretic classification. We begin with early discoveries in chemistry and in spectral observations, Thomson’s discovery of the electron, Lorentz’s electron theory, and Abraham’s mass-energy identification.

Further we dwell upon Kirchhoff’s laws of radiation, Rayleigh–Jeans’s and Planck’s theories of black-body radiation, and the ‘old’ quantum mechanics of Niels Bohr. Next we show how these achievements emerged in the development of Heisenberg’s matrix theory of quantum mechanics, de Broglie’s wave–particle dualism and the generalizations thereof by Schrödinger.

Finally, we describe the quasiclassical asymptotics (‘geometrical optics’) for short-wavelength solutions of the Schrödinger equation, which provides a ‘bridge’ between the quantum and classical description of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. M. Abraham, Dynamik des Elektrons. Phys. Z. 4, 57–63 (1902); G tt. Nachr., 20-41, 1902

    MATH  Google Scholar 

  2. M. Abraham, Theorie der Elektrizität, Bd. 2: Elektromagnetische Theorie der Strahlung (Teubner, Leipzig, 1905)

    Google Scholar 

  3. R. Becker, Electromagnetic Fields and Interactions, Vol. I, II: Quantum Theory of Atoms and Radiation (Blaisdell, Boston, 1964)

    Google Scholar 

  4. N. Bohr, Philos. Mag. 26, 1; 476; 857 (1913)

    Article  MATH  Google Scholar 

  5. N. Bohr, K. Dan. Vidensk. Selsk. Skr., Nat.vidensk. Math. Afd. 8. Raekke IV.1, 1–3 (1918) [English translation: On the quantum theory of line spectra, pp. 95–138 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    MathSciNet  Google Scholar 

  6. L. Boltzman, Vorlesungen über Gastheory (Barth, Leipzig, 1896) (Part I), 1898 (Part II)

    Google Scholar 

  7. C. Davisson, L. Germer, Nature 119, 558 (1927)

    Article  ADS  Google Scholar 

  8. P. Debye, Zur Theorie der spezifischen Waerme. Ann. Phys. (Leipz.) 39(4), 789 (1912)

    Article  ADS  MATH  Google Scholar 

  9. P.A.M. Dirac, Proc. R. Soc. A 112, 661 (1926)

    Article  ADS  MATH  Google Scholar 

  10. T. Dudnikova, A. Komech, H. Spohn, Energy-momentum relation for solitary waves of relativistic wave equation. Russ. J. Math. Phys. 9(2), 153–160 (2002)

    MathSciNet  MATH  Google Scholar 

  11. A. Einstein, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Phys. (4) 22, 180–190 (1907) [English translation: Planck’s theory and the theory of specific heat. CPAE, vol. 2, Doc. 38]

    MATH  Google Scholar 

  12. A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (Concerning the generation and transformation of light as seen from a heuristic point of view), in Annalen der Physik, March 18, 1905

    Google Scholar 

  13. A. Einstein, Planck’s theory of radiation and the theory of specific heat. Ann. Phys. (4) 22, 180–190 (1906)

    Article  Google Scholar 

  14. R. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. I, II, III (Addison-Wesley, Reading, 1964)

    Google Scholar 

  15. M. Fowler. http://galileo.phys.virginia.edu/classes/252/spectra.html

  16. M. Gardner, The New Ambidextrous Universe. Symmetry and Asymmetry from Mirror Reflections to Superstrings (Freeman, New York, 1990)

    Google Scholar 

  17. L. Houllevigue, L’Évolutlon des Sciences (Collin, Paris, 1908)

    Google Scholar 

  18. W. Kauffmann, Ann. Phys. 61, 544 (1897)

    Article  Google Scholar 

  19. G. Kirchhoff, Poggendorff’s Ann. 59, 275 (1860) [English translation: On the relation between the radiating and absorbing powers of different bodies for light and heat, Philos. Mag. Ser. 4 20(130), 1–21 (1860)]

    Article  Google Scholar 

  20. A. Komech, H. Spohn, M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field. Commun. Partial Differ. Equ. 22, 307–335 (1997)

    MathSciNet  MATH  Google Scholar 

  21. H.A. Kramers, The quantum theory of dispersion. Nature 113, 673–676 (1924) [pp. 177–180 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  Google Scholar 

  22. H.A. Kramers, The law of dispersion and Bohr’s theory of spectra. Nature 114, 310–311 (1924) [pp. 199–202 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  Google Scholar 

  23. H.A. Kramers, W. Heisenberg, Über die Streuung von Strahlen durch Atome. Z. Phys. 31, 681–708 (1925) [English translation: On the dispersion of radiation by atoms, pp. 223–252 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  MATH  Google Scholar 

  24. R. Ladenburg, Die quantentheoretische Zahl der Dispersionelektronen. Z. Phys. 4, 451–468 (1921) [English translation: The quantum-theoretical interpretation of the number of dispersion electrons, pp. 139–158 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  Google Scholar 

  25. H.A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat. Lectures from a course held at Columbia University, New York, NY, USA, March and April 1906, Repr. of the 2nd ed., Sceaux: Éditions Jacques Gabay (1992)

    Google Scholar 

  26. http://www.discoveriesinmedicine.com/Bar-Cod/Cathode-Ray-Tube-CRT.html

  27. http://en.wikipedia.org/wiki/Oil_drop_experiment, http://library.thinkquest.org/19662/low/eng/exp-millikan.html

  28. R. Newburgh, J. Peidle, W. Rueckner, Einstein, Perrin, and the reality of atoms: 1905 revisited. Am. J. Phys. 74(6), 478–481 (2006). www.ias.u-psud.fr/medoc-OLD/BOUDINE/presentations/EPA%205.doc

    Article  Google Scholar 

  29. W. Pauli, Quantentheorie, in Handbuch der Physik, vol. 23, ed. by H. Geiger, K. Scheel (Springer, Berlin, 1926), pp. 1–278

    Google Scholar 

  30. J. Perrin, New experiments on the cathode rays. Nature 53, 298–299 (1896). http://www.chemteam.info/Chem-History/Perrin-1895.html

    Article  Google Scholar 

  31. M. Planck, Über eine Verbesserung der wienschen Spektralgleichung. Verh. Dtsch. Phys. Ges. 2, 202–204 (1967) [English translation: On an improvement of Wien’s equation for the spectrum, pp. 79–81 in: D. ter-Haar, The Old Quantum Theory, Pergamon, Oxford, 1967]. http://www.ffn.ub.es/luisnavarro/nuevo_maletin/Planck%20%281900%29,%20Improvement%20of%20Wien%27s.pdf

    Google Scholar 

  32. M. Planck, The Theory of Heat Radiation (Blakiston’s, London, 1914)

    Google Scholar 

  33. W.H. Slabaugh, Determination of Avogadro’s number by Perrin’s law. J. Chem. Educ. 42(9), 471–472 (1965). http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_74/iss_6/478_1.html

    Article  Google Scholar 

  34. A. Sommerfeld, Thermodynamics and Statistical Mechanics. Lectures on Theoretical Physics, vol. V (Academic Press, New York, 1956)

    MATH  Google Scholar 

  35. N. Straumann, On the first solvay congress in 1911. arXiv:1109.3785

  36. J.J. Thomson, Philos. Mag. 44, 298 (1897)

    Google Scholar 

  37. http://www.youtube.com/watch?v=IdTxGJjA4Jw

  38. B.L. van der Waerden (ed.), Sources in Quantum Mechanics (North-Holland, Amsterdam, 1967)

    Google Scholar 

  39. E. Whittaker, A History of the Theories of Aether and Electricity, vol. 1 (Nelson, London, 1951)

    MATH  Google Scholar 

  40. http://www.physics.rutgers.edu/ugrad/387/zeeman.pdf, hyperphysics.phy-astr.gsu.edu/hbase/quantum/zeeman.html, http://www.thphys.de/docs/F44_Normal_Zeeman_Effect.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Komech, A. (2013). Genesis of Quantum Mechanics. In: Quantum Mechanics: Genesis and Achievements. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5542-0_1

Download citation

Publish with us

Policies and ethics