Skip to main content

Abstract

The natural environment inhabited by halophiles results in continual exposure of these organisms to elevated temperatures, fluctuations in oxygen and nutrient concentrations, high levels of solar radiation, and periodic desiccation. Exposure to these conditions results in extensive DNA damage that must be repaired to maintain genomic fidelity and cellular viability. At the same time, DNA replication needs to be highly accurate to prevent the accumulation of mutation and its deleterious effects on the cell’s survival. These processes must also allow for errors to generate the diversity required for Darwinian evolution. Studies of DNA replication and repair mechanisms in halophilic archaea, using a combination of biochemical and genetic approaches, have shown to date that these mechanisms bear a great many similarities to their non-halophilic counterparts. An important finding, however, is that the archaeal proteins involved in these processes do not represent a reduce repertoire of eukaryotic proteins but are rather a mosaic of eukaryal and bacterial systems with archaeal-specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  CAS  PubMed  Google Scholar 

  • Allers T, Ngo HP (2003) Genetic analysis of homologous recombination in Archaea: Haloferax volcanii as a model organism. Biochem Soc Trans 31:706–710

    Article  CAS  PubMed  Google Scholar 

  • Allers T, Barak S, Liddell S, Wardell K, Mevarech M (2010) Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76:1759–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altshuler M (1993) Recovery of DNA replication in UV-damaged Escherichia coli. Mutation Research/DNA Repair 294:91–100

    Article  CAS  Google Scholar 

  • Asgarani E, Funamizu H, Saito T, Terato H, Ohyama Y, Yamamoto O, Ide H (1999) Mechanisms of DNA protection in Halobacterium salinarium, an extremely halophilic bacterium. Microbiol Res 154:185–190

    Article  CAS  Google Scholar 

  • Assenmacher N, Hopfner K (2004) Mre11/Rad50/Nbs1: Complex activities. Chromosoma 113:157–166

    Article  CAS  PubMed  Google Scholar 

  • Aylon Y, Kupiec M (2004) DSB repair: the yeast paradigm. DNA Repair (Amst) 3:797–815

    Article  CAS  Google Scholar 

  • Bakke P, Carney N, Deloache W et al (2009) Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS ONE 4:e6291

    Article  CAS  Google Scholar 

  • Baliga N, Bjork S, Bonneau R et al (2004a) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT et al (2004b) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70:876–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berquist BR, DasSarma S (2003) An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. Strain NRC-1. J. Bacteriol 185: 5959-5966

    CAS  PubMed  Google Scholar 

  • Berquist BR, DasSarma P, DasSarma S (2007) Essential and non-essential DNA replication genes in the model halophilic archaeon, Halobacterium sp. NRC-I. BMC Genetics 8:31

    Article  PubMed  CAS  Google Scholar 

  • Blaisdell JO, Wallace SS (2001) Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci USA 98:7426–7430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochman ML, Schwacha A (2009) The MCM complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73:652–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Palm P, Wende A et al (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boubriak I, Ng WL, DasSarma P, DasSarma S, Crowley DJ, McCready SJ (2008) Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1. Saline Syst 4:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS ONE 1:e92

    Article  CAS  Google Scholar 

  • Brill SJ, Stillman B (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Bugreev DV, Mazina OM, Mazin AV (2006) Rad54 protein promotes branch migration of Holliday junctions. Nature 442:590–593

    Article  CAS  PubMed  Google Scholar 

  • Busch CR, Diruggiero J (2010) MutS and MutL are dispensable for maintenance of the genomic mutation rate in the halophilic archaeon Halobacterium salinarum NRC-1. PLoS ONE 5:e9045

    Article  CAS  Google Scholar 

  • Butala M, Žgur-Bertok D, Busby S (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66:82–93

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Bourdat A, D’Ham C, Duarte V, Gasparutto D, Romieu A, Ravanat J (2000) Oxidative base damage to DNA: specificity of base excision repair enzymes. Mutat Res 462:121–128

    Article  CAS  PubMed  Google Scholar 

  • Cannio R, Fiorentino G, Morana A, Rossi M, Bartolucci S (2000) Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra-and extracellular oxidative stress. Front Biosci 5:D768-D779

    Article  CAS  PubMed  Google Scholar 

  • Capes MD, Coker JA, Gessler R et al (2011) The information transfer system of halophilic archaea. Plasmid 65:77–101

    Article  CAS  PubMed  Google Scholar 

  • Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251

    Article  CAS  PubMed  Google Scholar 

  • Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL, Kowalczykowski SC (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116:39–50

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Kocherginskaya SA, Lin Y et al (2005) Biochemical and mutational analyses of a unique clamp loader complex in the archaeon Methanosarcina acetivorans. J.Biol Chem 280:41852–41863

    Article  CAS  PubMed  Google Scholar 

  • Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA 97:1530–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockell C, Catling D, Davis W, Snook K, Kepner R, Lee P, McKay C (2000) The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146:343–359

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Cambridge Philos Soc 74:311–345

    Article  CAS  PubMed  Google Scholar 

  • Coker J, DasSarma P, Kumar J, Müller J, DasSarma S (2007) Transcriptional profiling of the model archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. Saline Syst 3:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constantinesco F, Forterre P, Elie C (2002) NurA, a novel 5′-3′ nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea. EMBO Rep 3:537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie C (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox MM (2001) Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu Rev Genet 35:53–82

    Article  CAS  PubMed  Google Scholar 

  • Crowley D, Boubriak I, Berquist B et al (2006) The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Syst 2:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Costa M, Santos H, Galinski E (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY et al (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY et al (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92

    Article  CAS  Google Scholar 

  • Daly M, Gaidamakova E, Matrosova V et al (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS ONE 5:e12570

    Article  CAS  Google Scholar 

  • DasSarma S, Kennedy S, Berquist B, Victor Ng W, Baliga NS, Spudich JL, Krebs MP, Eisen JA, Johnson CH,, Hood L (2001) Genomic perspective on the photobiology of Halobacterium sp. NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth Res 70:3–17

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J (2000) DNA photolyases and cryptochromes. Mutat Res 460:143–149

    Article  CAS  PubMed  Google Scholar 

  • Delmas S, Shunburne L, Ngo H, Allers T (2009) Mre11-Rad50 promotes rapid repair of dna damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination. PLoS Genet 5:e1000552

    Article  CAS  Google Scholar 

  • DeVeaux LC, ller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-strand DNA-binding protein (RPA) gene expression. Radiation Research 168:507–514

    Article  CAS  PubMed  Google Scholar 

  • Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 23:745–749

    Article  CAS  PubMed  Google Scholar 

  • Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11:275–282

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (2003) Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage. Mutat Res 531:109–126

    Article  CAS  PubMed  Google Scholar 

  • Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221–229

    Article  CAS  PubMed  Google Scholar 

  • Dueber EC, Costa A, Corn JE, Bell SD, Berger JM (2011) Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Res 39:3621–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundas I, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Arch Microbiol 44:233–239

    CAS  Google Scholar 

  • Dyall-Smith M (2009) The Halohandbook—Protocols for haloarchaeal genetics. Available at http://www.haloarchaea.com/resources/halohandbook/index.htmlAccessed 30 Oct. 2012.

  • Eker AP, Kooiman P, Hessels JK, Yasui A (1990) DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265:8009–8015

    Article  CAS  PubMed  Google Scholar 

  • Engel MB, Catchpole HR (2005) A microprobe analysis of inorganic elements in Halobacterium salinarum. Cell Biol Int 29:616–622

    Article  CAS  PubMed  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated martian ultraviolet radiation onHalococcus dombrowskiiand other extremely halophilic Archaebacteria. Astrobiology 9:104–112

    Article  CAS  PubMed  Google Scholar 

  • Fitt PS, Sharma N, Castellanos G (1983) A comparison of liquid-holding recovery and photoreactivation in halophilic and non-halophilic bacteria. Biochim Biophys Acta 739:73–78

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood R, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM, Washington, DC

    Google Scholar 

  • Fujikane R, Komori K, Shinagawa H, Ishino Y (2005) Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biol Chem 280:12351–12358

    Article  CAS  PubMed  Google Scholar 

  • Fujikane R, Ishino S, Ishino Y (2010) Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Genes Genet Syst 85:243–257

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C (2006) The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol 188:3774–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski B, Kelman Z (2003) Archaeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microb 57:487–516

    Article  CAS  Google Scholar 

  • Grant W, Gemmell R, McGenity T (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  CAS  PubMed  Google Scholar 

  • Grey VL, Fitt PS (1976) Evidence for the lack of deoxyribonucleic acid dark-repair in Halobacterium cutirubrum. Biochem J 156:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H, Stan-Lotter H (2004) Halobacterium noricense sp. nov an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431-439

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  CAS  PubMed  Google Scholar 

  • Gusev O, Nakahara Y, Vanyagina V et al (2010) Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance. PLoS ONE 5:e14008

    Article  CAS  Google Scholar 

  • Guy C, Bolt E (2005) Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 33:3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy C, Haldenby S, Brindley A et al (2006) Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP. J Mol Biol 358:46–56

    Article  CAS  PubMed  Google Scholar 

  • Haldenby S, White MF, Allers T (2009) RecA family proteins in archaea: RadA and its cousins. Biochem Soc Trans 37:102–107

    Article  CAS  PubMed  Google Scholar 

  • Hartman AL, Norais C, Badger JH et al (2010) The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE 5:e9605

    Article  CAS  Google Scholar 

  • Hescox MA, Carlberg DM (1972) Photoreactivation in Halobacterium cutirubrum. Can J Microbiol 18(7):981–985

    Article  CAS  PubMed  Google Scholar 

  • Heyer W, Ehmsen K, Solinger J (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28:548–557

    Article  CAS  PubMed  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G et al (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    Article  CAS  PubMed  Google Scholar 

  • Hopkins B, Paull T (2008) The Pyrococcus furiosus Mre11/Rad50 complex promotes 5′ strand resection at a DNA double-strand break. Cell 135:250–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  CAS  PubMed  Google Scholar 

  • Imshenetsky AA, Kouzyurina LA, Jakshina VM (1973) On the multiplication of xerophilic micro-organisms under simulated Martian conditions. Life Sci Space Res 11:63–66

    CAS  PubMed  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA +ATPases. J Struct Biol 146:11–31

    Article  CAS  PubMed  Google Scholar 

  • Janion C (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci 4:338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jékely G (2009) Evolution of phototaxis. Phil Trans R Soc B Biol Sci 364:2795

    Article  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12:217–224

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Van P, Busch C et al (2010) Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol 6:393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerfeld CA (2004) Water-soluble carotenoid proteins of cyanobacteria. Arch Biochem Biophys 430:2–9

    Article  CAS  PubMed  Google Scholar 

  • Keyer K, Gort A, Imlay J (1995) Superoxide and the production of oxidative DNA damage. J Bacteriol 177:6782–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kish A, Diruggiero J (2008) Rad50 is not essential for the Mre11-dependent repair of DNA double-strand breaks in Halobacterium sp. strain NRC-1. J Bacteriol 190:5210–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Kminek G, Bada JL, Pogliano K, Ward JF (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbe M, Besir H, Essen L, Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390–1393

    Article  CAS  PubMed  Google Scholar 

  • Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y (2004) Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks. J Biol Chem 279:53175–53185

    Article  CAS  PubMed  Google Scholar 

  • Komori K, Miyata T, Daiyasu H, Toh H, Shinagawa H, Ishino Y (2000a) Domain analysis of an archaeal RadA protein for the strand exchange activity. J Biol Chem 275:33791–33797

    Article  CAS  PubMed  Google Scholar 

  • Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IKO, Mayanagi K, Shinagawa H, Ishino Y (2000b) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790

    Article  CAS  PubMed  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kowalczykowski S, Dixon D, Eggleston A, Lauder S, Rehrauer W (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Mol Biol Rev 58:401–465

    CAS  Google Scholar 

  • Krogh B, Symington L (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha SC, Kramer JK, Kates M (1975) Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. Biochim Biophys Acta 398:303–314

    Article  CAS  PubMed  Google Scholar 

  • Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584:3682–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange C, Zaigler A, Hammelmann M et al (2007) Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. BMC Genomics 8:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Latifi A, Ruiz M, Zhang C-C (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  PubMed  Google Scholar 

  • Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608

    Article  CAS  PubMed  Google Scholar 

  • Lestini R, Duan Z, Allers T (2010) The archaeal Xpf/Mus81/FANCM homolog Hef and the Holliday junction resolvase Hjc define alternative pathways that are essential for cell viability in Haloferax volcanii. DNA Repair 9:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Leuko S, Raftery MJ, Burns BP, Walter MR, Neilan BA (2009) Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations. J Prot Res 8:2218–2225

    Article  CAS  Google Scholar 

  • Leuko S, Neilan BA, Burns BP, Walter MR, Rothschild LJ (2010) Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. J Photochem Photobiol B Biol 102:140–145

    Article  CAS  Google Scholar 

  • Levine E, Thiel T (1987) UV-inducible DNA repair in the cyanobacteria Anabaena spp. J Bacteriol 169:3988–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Heyer W (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lu S, Hou G, Ma X, Sheng D, Ni J, Shen Y (2008) Hjm/Hel308A DNA helicase from Sulfolobus tokodaii promotes replication fork regression and interacts with Hjc endonuclease in vitro. J Bacteriol 190:3006–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutnaes B, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343

    Article  CAS  PubMed  Google Scholar 

  • MacNeill SA (2009) The haloarchaeal chromosome replication machinery. Biochem Soc Trans 37:108–113

    Article  CAS  PubMed  Google Scholar 

  • MacNeill SA (2010) Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 425:489–500

    Article  CAS  PubMed  Google Scholar 

  • Malfatti S, Tindall BJ, Schneider S et al (2009) Complete genome sequence of Halogeometricum borinquense type strain (PR3). Stand Genomic Sci 1:150–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD (2006) GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 7:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin EL, Reinhardt RL, Baum LL, Becker MR, Shaffer JJ, Kokjohn TA (2000) The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum. Can J Microbiol 46(2):180–187

    Google Scholar 

  • Matsumiya S, Ishino Y, Morikawa K (2001) Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci 10:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga F, Forterre P, Ishino Y, Myllykallio H (2001) In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci USA 20:11152–11157

    Article  Google Scholar 

  • Matsunaga F, Glatigny A, Mucchielli-Giorgi M-H et al (2007) Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucl Acids Res 35:3214–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga F, Takemura K, Akita M, Adachi A, Yamagami T, Ishino Y (2010) Localized melting of duplex DNA by Cdc6/Orc1 at the DNA replication origin in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 14:21–31

    Article  CAS  PubMed  Google Scholar 

  • Mattimore V, Battista J (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCready S (1996) The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium and Haloferax volcanii. Mutat Res 364:25–32

    Article  PubMed  Google Scholar 

  • McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31:694–698

    Article  CAS  PubMed  Google Scholar 

  • McCready S, Müller J, Boubriak I, Berquist B, Ng W, DasSarma S (2005) UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Syst 1: 3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  CAS  PubMed  Google Scholar 

  • Meslet-Cladiere L, Norais C, Kuhn J et al (2007) A novel proteomic approach identifies new interaction partners for proliferating cell nuclear antigen. J Mol Biol 372:1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Michel B (2000) Replication fork arrest and DNA recombination. TIBS 25:173–178

    CAS  PubMed  Google Scholar 

  • Mimitou E, Symington L (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774

    Article  CAS  PubMed  Google Scholar 

  • Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair 8:983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimitou EP, Symington LS (2011) DNA end resection-Unraveling the tail. DNA Repair 10:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711:61–72

    Article  CAS  PubMed  Google Scholar 

  • Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H (2010) UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 73:271–277

    CAS  PubMed  Google Scholar 

  • Molina-Höppner A, Doster W, Vogel RF, Gänzle MG (2004) Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70:2013–2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S et al (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgunova E, Gray FC, Macneill SA, Ladenstein R (2009) Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment. Acta Cryst Section D Biol Cryst 65:1081–1088

    Article  CAS  Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. Embo J 12:861–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myllykallio H, Lopez P, Lopez-Garcia P et al (2000) Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288:2212–2215

    Article  CAS  PubMed  Google Scholar 

  • Ng WO, Pakrasi HB (2001) DNA photolyase homologs are the major UV resistance factors in the cyanobacterium Synechocystis sp. PCC 6803. Mol Gen Genet 264:924–930

    Article  CAS  PubMed  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG et al (2000) Genome sequence of Halobacterium sp. NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickle DC, Learn GH, Rain MW, Mullins JI, Mittler JE (2002) Curiously modern DNA for a “250 Million-Year-Old” bacterium. J Mol Evol 54:134–137

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K (2005) Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure 13:143–153

    Article  CAS  PubMed  Google Scholar 

  • Niu H, Chung W-H, Zhu Z et al (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T (2007) Genetic and physical mapping of dna replication origins in Haloferax volcanii. PLoS Genetics 3:e77

    Article  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren A, Bekhor B (1999) Tolerance of extremely halophilic archaebacteria towards bromide. Curr Microbiol 19:371–374

    Article  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN (2005) How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles 9:275–279

    Article  CAS  PubMed  Google Scholar 

  • Oyama T, Ishino S, Fujino S et al (2011) Architectures of archaeal GINS complexes, essential DNA replication initiation factors. BMC Biol 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paques F, Haber J (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel M, Bérces A, Kerékgyárto T, Rontó G, Lammer H, Zarnecki J (2004) Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv Space Res 33:1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Poidevin L, MacNeill SA (2006) Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations. BMC Molecular Biology 7:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7:648–652

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reardon J, Sancar A (2005) Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 79:183–235

    Article  CAS  PubMed  Google Scholar 

  • Regulus P, Duroux B, Bayle PA, Favier A, Cadet J, Ravanat JL (2007) Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci USA 35:14032–14037

    Article  CAS  Google Scholar 

  • Rieder R, Gellert R, Anderson RC et al (2004) Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306:1746–1749

    Article  CAS  PubMed  Google Scholar 

  • Riley P (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  CAS  PubMed  Google Scholar 

  • Robbins JB, McKinney MC, Guzman CE, Sriratana B, Fitz-Gibbon S, Ha T, Cann IK (2005) The Euryarchaeota: nature’s medium for engineering of single-strand DNA binding proteins. J Biol Chem 280:15325–15339

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson NP, Bell SD (2007) Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci USA 104:5806–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD (2004) Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116:25–38

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Webb K, Kaur A, Jaruga P, Dizdaroglu M, Baliga NS, Place A, DiRuggiero J (2011) A major role for non-enzymatic antioxidant processes in the radioresistance of Halobacterium salinarum. J Bacteriol 193:1653–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Makarova KS, Pavlov YI, Koonin EV (2008) A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 3:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rupnik A, Grenon M, Lowndes N (2008) The MRN complex. Curr Biol 18:R455-R457

    Article  CAS  PubMed  Google Scholar 

  • Rupnik A, Lowndes N, Grenon M (2009) MRN and the race to the break. Chromosoma 119:115–135

    Article  PubMed  Google Scholar 

  • Sage E, Harrison L (2010) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res 711(1–2):123–133 (Epub 2010 Dec 24, Review 3 Jun 2011)

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Miyabe Y, Ide H, Yamamoto O (1997) Hydroxyl radical scavening ability of bacterioruberin. Radiat Phys Chem 50:267–269

    Article  CAS  Google Scholar 

  • Sakakibara N, Kelman LM, Kelman Z (2009) Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 72:286–296

    Article  CAS  PubMed  Google Scholar 

  • Sancar A, Reardon JT, Wei Y (2004) nucleotide excision repair in E. coli and man. Adv Prot Chem 69:43–71.

    CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Saunders E, Tindall BJ, Fahnrich R et al (2010) Complete genome sequence of Haloterrigena turkmenica type strain (4k). Stand Genomic Sci 2:107–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmid AK, Reiss DJ, Kaur A et al (2007) The anatomy of microbial cell state transitions in response to oxygen. Genome Res 17:1399–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482

    Article  CAS  PubMed  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H, Ide H, Yamamoto O (1997) Effects of 60Co gamma-rays, ultraviolet light, and mitomycin C on Halobacterium salinarium and Thiobacillus intermedius. J Radiat Res 38(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Hepburn D, Fitt PS (1984) Photoreactivation in pigmented and non-pigmented extreme halophiles. Biochimt Biophys Acta 799:135–142

    Article  CAS  Google Scholar 

  • Shim EY, Chung W-H, Nicolette ML, Zhang Y, Davis M, Zhu Z, Paull TT, Ira G, Lee SE (2010) Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29:3370–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  • Shukla H (2006) Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response. Proteome Sci 4:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skowyra A, Macneill SA (2011) Identification of essential and non-essential single-strand DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 40(3):1077–1090 (Published online 2011 October 5. doi:10.1093/nar/gkr838)

    Google Scholar 

  • Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055

    Article  CAS  PubMed  Google Scholar 

  • Slupphaug G, Kavli B, Krokan H (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    Article  CAS  PubMed  Google Scholar 

  • Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    CAS  PubMed  Google Scholar 

  • Steiner M, Oesterhelt D, Ariki M, Lanyi J (1984) Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. J Biol Chem 259:2179

    CAS  Google Scholar 

  • Stracker TH, Petrini JH (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12:90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svendsen JM, Harper JW (2010) GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution. Genes Dev 24:521–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson R, Morey N, Doetsch P, Jinks-Robertson S (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol 19:2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symington L (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takara TJ, Bell SP (2009) Putting two heads together to unwind DNA. Cell 139:652–654

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Asato Y (1978) Ultraviolet light-induction and photoreactivation of thymine dimers in a cyanobacterium, andlt;iandgt;Anacystis nidulansandlt;/iandgt. Arch Microbiol 118:193–197

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ, Schneider S, Lapidus A et al (2009) Complete genome sequence of Halomicrobium mukohataei type strain (arg-2). Stand Genomic Sci 1:270–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosca NJ, Knoll AH, Mclennan SM (2008) Water activity and the challenge for life on early Mars. Science 320:1204–1207

    Article  CAS  PubMed  Google Scholar 

  • Truglio JJ, Croteau DL, Van Houten B, Kisker C (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106:233–252

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  CAS  PubMed  Google Scholar 

  • Warbrick E (2000) The puzzle of PCNA’s many partners. Bioessays 22:997–1006

    Article  CAS  PubMed  Google Scholar 

  • West S (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4:435–445

    Article  CAS  PubMed  Google Scholar 

  • Whitehead K, Kish A, Pan M et al (2006) An integrated systems approach for understanding cellular responses to gamma radiation. Mol Syst Biol 2:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams GJ, Johnson K, Rudolf J et al (2006) Structure of the heterotrimeric PCNA from Sulfolobus solfataricus. Acta crystallographica. Section F, Structural Biology and Crystallization Communications 62:944–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RS, Williams JS, Tainer JA (2007) Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85:509–520

    Article  CAS  PubMed  Google Scholar 

  • Williams RS, Dodson GE, Limbo O et al (2009) Nbs1 Flexibly Tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299–1306 (Epub 28 Oct 2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter JA, Christofi P, Morroll S, Bunting KA (2009) The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation. BMC Structural Biology 9:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-strand DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  PubMed  Google Scholar 

  • Woodman IL, Bolt EL (2009) Molecular biology of Hel308 helicase in archaea. Biochem Soc Trans 37:74–78

    Article  CAS  PubMed  Google Scholar 

  • Woods W, Dyall-Smith M (1997) Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23:791–797

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Lewin RA, Werbin H (1967) Photoreactivation of UV-irradiated blue-green algal virus LPP-1. Virology 31:657–664

    Article  CAS  PubMed  Google Scholar 

  • Wyman C, Ristic D, Kanaar R (2004) Homologous recombination-mediated double-strand break repair. DNA Repair (Amst) 3:827–833

    Article  CAS  PubMed  Google Scholar 

  • Xie A, Kwok A, Scully R (2009) Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol 16:814–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey P (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819

    Article  CAS  PubMed  Google Scholar 

  • Yoshimochi T, Fujikane R, Kawanami M, Matsunaga F, Ishino Y (2008) The GINS Complex from Pyrococcus furiosus Stimulates the MCM Helicase Activity. J Biol Chem 283:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20:402–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Z, Shi LZ, Zhu Q et al (2009) CtIP links DNA double-strand break sensing to resection. Mol Cell 36:954–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahradka K, Slade D, Bailone A et al (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang CT (2003) Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun 302:728–734

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang C (2004) Identification of replication origins in the genome of the methanogenic archaeon, Methanocaldococcus jannaschii. Extremophiles 8:253–258

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Gray FC, MacNeill SA (2006) ATP– and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii. Molecular Microbiology 59:743–752

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Graham JE, Ludwig M, Xiong W, Alvey RM, Shen G, Bryant DA (2010) Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Arch Biochem Biophys 504:86–99

    Article  CAS  PubMed  Google Scholar 

  • Zolensky ME (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285:1377–1379

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne Kish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kish, A., DiRuggiero, J. (2012). DNA Replication and Repair in Halophiles. In: Vreeland, R.H. (eds) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5539-0_7

Download citation

Publish with us

Policies and ethics