Skip to main content

Biotechnology of Eruca Sativa Mill

  • Chapter
  • First Online:

Abstract

Eruca sativa Mill is amenable to biotechnological procedures and these initial protocols represent a means of quickly adapting the inherent potential of this species to specific applications and markets. E. sativa has potential for food, feed, industrial, and medicinal purposes and is a pool of genetic diversity for the economically important Brassica species. Intergeneric hybrids with Brassica napus, B. rapa, and B. juncea have been produced through either embryo rescue or protoplast fusion. Brassica markers are transferrable to E. sativa making marker assisted selection possible. Tissue regeneration protocols focus around the use of cotyledons, hypocotyls or cotyledonary node explants. Low concentrations of \( \alpha \)-naphthaleneacetic acid (NAA) induce shoot organogenesis in 20 % of cultured explants, whereas somatic embryogenesis protocols focus around the use of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and give a regeneration rate of greater than ~6 %. Double haploid protocols exist for both isolated microspore culture and anther culture. The key feature of these protocols is the need for heat shock to trigger androgenesis. An Agrobacterium tumefaciens-mediated transformation protocol based around shoot organogenesis gives a transformation frequency of 1.1 %.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

BA:

6-Benzyladenine

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butryic acid

NAA:

\( \alpha \)-Naphthaleneacetic acid

References

  • Agnihotri A, Gupta V, Lakshmikumaran MS, Shivanna KR, Prakash S, Jagannathan V (1990) Production of Eruca-Brassica hybrids by embryo rescue. Plant Breed 104:281–289

    Article  Google Scholar 

  • Ahloowalia BS (1987) Somatic embryogenesis and plant regeneration in Eruca sativa. Crop Sci 27:813–814

    Article  Google Scholar 

  • Alqasoumi S (2010) Carbon tetrachloride-induced hepatotoxicity: protective effect of ‘Rocket’ Eruca sativa L. in Rats. Am J Chin Med 30:75–88

    Article  Google Scholar 

  • Alqasoumi S, Al-Sohaibani M, Al-Howiriny T, Al-Yahya M, Rafatullah S (2009) Rocket “Eruca sativa”: a salad herb with potential gastric anti-ulcer activity. World J Gastroenterol 15:1958–1965

    Article  PubMed  CAS  Google Scholar 

  • Al-Qurainy F (2010) Application of inter simple sequence repeat (ISSR marker) to detect genotoxic effect of heavy metals on Eruca sativa (L.). Afr J Biotechnol 9:467–474

    CAS  Google Scholar 

  • Angelini L, Lazzeri L, Galletti S, Cozzani A, Macchia M, Palmieri S (1998) Antigerminative activity of three glucosinolate-derived products generated by myrosinase hydrolysis. Seed Sci Technol 26:771–780

    Google Scholar 

  • Antonious GF, Bomford M, Vincelli P (2009) Screening Brassica species for glucosinolate content. J Environ Sci Health Part B 44:311–316

    Article  CAS  Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36:255–259

    Article  CAS  Google Scholar 

  • Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188

    Article  CAS  Google Scholar 

  • Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agric Food Chem 53:2475–2482

    Article  PubMed  CAS  Google Scholar 

  • Batra A, Dhingra M (1991) Production of plantlets of Eruca sativa in vitro. J Phytol Res 4:73

    Google Scholar 

  • Bianco VV (1995) Rocket, an ancient underutilized vegetable crop and its potential. In: Padulos S (ed) IPGRI: Rocket genetic resources network. International Plant Genetic Resources Institute, pp 35–57

    Google Scholar 

  • Bozokalfa MK, Esiyok D, Ilbi H, Kavak S, Asciogul TK (2011) Evaluation of phenotypic diversity and geographical variation of cultivated (Eruca sativa L.) and wild (Diplotaxis tenuifolia L.) rocket plant. Plant Genet Resour 9:454–463

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2004) Invited Review: Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551

    Article  CAS  Google Scholar 

  • Chauhan JS, Kumar S, Singh KH, Meena SS, Meena ML (2010) Oil and seed meal quality indices of Indian rapeseed-mustard varieties. J Plant Biochem Biotechnol 19:83–86

    CAS  Google Scholar 

  • Chakrabarti MH, Ali M, Baroutian S, Saleem M (2011) Techno-economic comparison between B10 of Eruca sativa L. and other indigenous seed oils in Pakistan. Process Saf Environ Prot 89:165–171

    Article  CAS  Google Scholar 

  • Chen K, Zhang XB, Jiang JL, Wang XY (2011) Plantlet regeneration from cotyledon, cotyledon petiole, and hypocotyl explants via somatic embryogenesis pathway in roquette (Eruca sativa Mill). Plant Biosyst 145:68–76

    Article  Google Scholar 

  • Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B.campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Article  CAS  Google Scholar 

  • Dai LJ, Li X, Guan CY, Zhong J (2004) On ovary and embryo culture of hybrid between rapeseeds and rocket salad. J Hunan Agric Univ 30:201–204

    CAS  Google Scholar 

  • Damgaard O, Rasmussen O (1991) Direct regeneration of transformed shoots in Brassica napus from hypocotyl infections with Agrobacterium rhizogenes. Plant Mol Biol 17:1–8

    Article  PubMed  CAS  Google Scholar 

  • De Block MD, DeBrouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the trangenic plants. Plant Physiol 91:694–701

    Article  PubMed  Google Scholar 

  • Egea-Gilabert C, Fernandez JA, Migliaro D, Martinez-Sanchez JJ, Vicente MJ (2009) Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Sci Hortic 121:260–266

    Article  CAS  Google Scholar 

  • Fagbenro OA (2004) Soybean meal replacement by roquette (Eruca sativa Miller) seed meal as protein feedstuff in diets for African catfish Clarias gariepinus (Burchell 1822), fingerlings. Aquacult Res 35:917–923

    Article  Google Scholar 

  • Fahleson J, Rahlen L, Glimelius K (1988) Analysis of plants regenerated from protoplast fusions between Brassica napus and Eruca sativa. Theor Appl Genet 76:507–512

    Article  Google Scholar 

  • Fazili IS, Masoodi M, Ahmad S, Jamal A, Khan JS, Abdin MZ (2010) Interactive effect of sulfur and nitrogen on growth and yield attributes of oilseed crops (Brassica campestris L. and Eruca sativa Mill.) differing in yield potential. J Plant Nutr 33:1216–1228

    Article  CAS  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104:301–309

    Article  Google Scholar 

  • Ferrie AMR, Mollers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Article  Google Scholar 

  • Flanders A, Abdulkarim SM (1985) The composition of seed and seed oils of Taramira (Eruca sativa). JAOCS 62:1134–1135

    Article  CAS  Google Scholar 

  • Germana MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org Cult 104:283–300

    Article  Google Scholar 

  • Kanya TCS, Urs MK (1989) Studies on Taramira (Eruca sativa) seed oil and meal. JAOCS 66:139–140

    Article  Google Scholar 

  • Kaushal GP, Sital JS, Bhatia IS (1982) Studies on Taramira seed (Eruca sativa Lam.) proteins. J Agric Food Chem 30:431–435

    Article  PubMed  CAS  Google Scholar 

  • Khater HF, Shalaby AA (2007) Potential of biologically active plant oils for controlling of Culex pipiens (Diptera: Culicidae). Acta Scientiae Veterinariae 35:153–160

    Google Scholar 

  • Khoobchandani M, Ojeswi BK, Ganesh N, Srivastava MM, Gabbanini S, Matera R, Iori R, Valgimigli L (2010) Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: Comparison with various aerial and root plant extracts. Food Chem 120:217–224

    Article  CAS  Google Scholar 

  • Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses amoung Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520

    Article  PubMed  CAS  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E (1999) Agrobacterium tumefaciens—mediated transformation of greenhouse: grown Brassica rapa ssp. oleifera. Plant Cell Rep 18:773–777

    Article  CAS  Google Scholar 

  • Lakshmikumaran M, Negi MS (1994) Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa. Plant Mol Biol 24:915–927

    Article  PubMed  CAS  Google Scholar 

  • Lamy E, Schroder J, Paulus S, Brenk P, Stahl T, Mersch-Sundermann V (2008) Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo (α) pyrene and their mode of action. Food Chem Toxicol 46:2415–2421

    Article  PubMed  CAS  Google Scholar 

  • Leskovsek L, Jakse M, Bohanec B (2008) Double haploid production of rocket (Eruca sativa Mill.) through isolate microspore culture. Plant Cell Tiss Org Cult 93:181–189

    Article  Google Scholar 

  • Li WW (2011) One-step preparation of efficient and reusable SO4(2)/ZrO(2)-based hybrid solid catalysts functionalized by alkyl-bridged organosilica moieties for biodiesel production. Chem Sus Chem 4:744–756

    CAS  Google Scholar 

  • Li S, Wang Y, Dong S, Chen Y, Cao F (2009) Biodiesel production from Eruca sativa gars vegetable oil and motor, emissions properties. Renew Energy 34:1871–1876

    Article  CAS  Google Scholar 

  • Magrath R, Mithen R (1997) Introgression of disease resistance genes from Eruca sativa into Brassica napus. In: ISHS Symposium on Brassicas. Tenth crucifer genetics workshop, pp 217

    Google Scholar 

  • Matsuzawa Y, Mekiyanon S, Kaneko Y, Bang SW, Wakui K, Takahata Y (1999) Male sterility in alloplasmic Brassica rapa L. carrying Eruca sativa cytoplasm. Plant Breed 118:82–84

    Article  Google Scholar 

  • Melchini A, Costa C, Traka M, Miceli N, Mithen R, DePasquale R, Trovato A (2009) Erucin, a new promising cancer chemopreventive agent from rocket salads, show anti-proliferative activity on human lung carcinoma A549 cells. Food Chem Toxicol 47:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Arumugam N, Anandakaumar PB, Pradhan AK, Gupta V, Pental D (1992) Agrobacterium-mediated genetic transformation of oilseed Brassica campestris: transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep 11:506–513

    Article  Google Scholar 

  • Murashige T, Skoog K (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parkash S, Chowdhury JB, Jain RK (1989) Callus initiation and regeneration potential in different genotypes of Eruca sativa. Curr Sci 58:979–980

    Google Scholar 

  • Pental D, Pradhan AK, Sodhi YS, Mukhopadhyay A (1993) Variation amongst Brassica juncea cultivars for regeneration from hypocotyl explants and optimization of conditions for Agrobacterium-mediated genetic transformation. Plant Cell Rep 12:462–467

    Article  CAS  Google Scholar 

  • Pignone D, Gomez-Campo C (2011) Eruca In: Kole C (ed) Wild crop relatives: genomic and breeding resources, oilseeds. Springer, Heidelberg

    Google Scholar 

  • Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102:689–694

    Article  CAS  Google Scholar 

  • Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed 115:209–225

    Article  CAS  Google Scholar 

  • Riga E, Pierce F, Collins HP (2006) Performance of arugula (Eruca sativa) as a green manure and trap crop for fungal pathogens and parasitic nematode suppression in potato. Proc Am Phytopathol Soc 96:S97

    Google Scholar 

  • Sarwar AM, Kaur G, Jabbar Z, Javed K (2007) Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem Toxicol 45:910–920

    Article  Google Scholar 

  • Sharma N, Bajaj M, Shivanna KR (1985) Overcoming self-incompatibility through the use of Lectins and sugars in Petunia and Eruca. Ann Bot 55:139–141

    Google Scholar 

  • Sikdar SR, Chatterjee G, Das S, Sen SK (1987) Regeneration of plants from mesophyll protoplast of the wild crucifer Eruca sativa Lam. Plant Cell Rep 6:486–489

    CAS  Google Scholar 

  • Sikdar SR, Chatterjee G, Das S, Sen SK (1990) ‘Erussica’, the intergeneric fertile somatic hybrid developed through protoplast fusion between Eruca sativa Lam. and Brassica juncea (L.) Czern. Theor Appl Gen 79:561–567

    Article  Google Scholar 

  • Slater SMH, Keller WA, Scoles G (2011) Agrobacterium-mediated transformation of Eruca sativa. Plant Cell Tiss Org Cult 106:253–260

    Article  CAS  Google Scholar 

  • Sun W, Guan C, Meng Y, Liu Z, Zhang T, Li X, Yang S, Ling L, Chen S, Zeng X, Wang H (2005a) Intergeneric crosses between Eruca sativa Mill. and Brassica species. Acta Agron Sin 31:36–42

    Google Scholar 

  • Sun W, Pan Q, Liu Z, Meng Y, Zhang T, Wang H, Zeng X (2004) Genetic resources of oilseed Brassica and related species in Gansu Province, China. Plant Genet Resour 2:167–173

    Article  Google Scholar 

  • Sun W, Pan Q, Liu Z, Meng Y, Zhang T, Wang H, Zeng X (2005b) Overcoming self-incompatibility in Eruca sativa by chemical treatment of stigmas. Plant Genet Resour 3:13–18

    Article  CAS  Google Scholar 

  • Sundberg E, Glimelius K (1991) Effects of parental ploidy level and genetic divergence on chromosome elimination and chloroplast segregation in somatic hybrids within Brassicaceae. Theor Appl Genet 83:81–88

    Article  Google Scholar 

  • Tang GX, Knecht K, Yang XF, Qin YB, Zhou WJ, Cai D (2011) A two-step protocol for shoot regeneration from hypocotyl explants of oilseed rape and its application for Agrobacterium-mediated transformation. Biol Plant 55:21–26

    Article  CAS  Google Scholar 

  • Tiyagi SA, Alam MM (1995) Efficacy of oil-seed cakes against plant-parasitic nematodes and soil-inhabiting fungi on mung-bean and chickpea. Bioresource Technol 51:233–239

    Article  CAS  Google Scholar 

  • Tribulato A, Branca F (2008) Haploid plants regeneration of Eruca sativa by in vitro anther culture. In: Modern variety breeding for present and future needs. Proceedings of the 18th EUCARPIA general congress, p 259

    Google Scholar 

  • Ugur A, Suntar I, Aslan S, Orhan IE, Kartal M, Sekeroglu N, Esiyok D, Sener B (2010) Variations in fatty acid compositions of the seed oil of Eruca sativa Mill. caused by different sowing periods and nitrogen forms. Pharmacogn Mag 6:305–308

    Article  PubMed  CAS  Google Scholar 

  • Verma SC (1984) Genic male sterility in Eruca sativa cruciferae. Incompat Newsl 16:9

    CAS  Google Scholar 

  • Verma SC, Malik R, Dhir I (1977) Genetics of the incompatibility system in the crucifer Eruca sativa L. Proc R Soc Lond B 96:131–159

    Article  Google Scholar 

  • Warwick S (1995) Rocket, an ancient underutilized vegetable crop and its potential. In: Padulos S (ed) IPGRI: rocket genetic resources network. International plant genetic resources institute, pp 22–34

    Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematic of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  Google Scholar 

  • Warwick SI, Gugel RK, Gomez-Campo C, James T (2007) Genetic variation in Eruca vesicaria (L.) Cav. Plant Genet Resour 5:142–153

    Article  Google Scholar 

  • Yadava TP, Friedt SW, Gupta SK (1998) Oil content and fatty acid composition of Taramira (Eruca sativa L.) genotypes. J Food Sci Technol 35:557–558

    CAS  Google Scholar 

  • Yadava DK, Parida SK, Dwivedi VK, Varshney A, Ghazi IA, Sujata V, Mohapatra T (2009) Cross-transferability and polymorphic potential of genomic STMS markers of Brassica species. J Plant Biochem Biotechnol 18:29–36

    Article  CAS  Google Scholar 

  • Yaniv Z, Schafferman D, Amar Z (1998) Tradition, uses and biodiversity of rocket (Eruca sativa, Brassicaceae) in Israel. Econ Bot 52:394–400

    Article  Google Scholar 

  • Yehuda H, Khatib S, Sussan I, Musa R, Vaya J, Tamir S (2009) Potential skin anti-inflammatory effects of 4-methylthiobutylisothiocyanate (MTBI) isolated from rocket (Eruca sativa) seeds, vol 35. International Union of Biochemistry and Molecular Biology, Inc, pp 295–305

    Google Scholar 

  • Xue S-H, Luo X-J, Wu Z-H, Zhang H-L, Wang X-Y (2008) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill., Astragalus membranaceus and Gentiana macrophylla pall. Plant Cell Tiss Org Cult 92:251–260

    Article  Google Scholar 

  • Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:1017–1024

    Article  CAS  Google Scholar 

  • Zhang T, Cao ZY, Wang XY (2005) Induction of somatic embryogenesis and plant regeneration from cotyledon to hypocotyl explants of Eruca sativa Mill. In Vitro Cell Dev Biol-Plant 41:655–657

    Article  Google Scholar 

  • Zhang CL, Gui XM, Ahu Y, Liu YT, Mao XQ, Lin LB (2008) Plant regeneration and hypocotyl protoplasts isolation of Eruca sativa. J S China Agric Univ 29:63–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan MH Slater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Slater, S.M. (2013). Biotechnology of Eruca Sativa Mill. In: Jain, S., Dutta Gupta, S. (eds) Biotechnology of Neglected and Underutilized Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5500-0_9

Download citation

Publish with us

Policies and ethics