Skip to main content

Did Reichenbach Anticipate Quantum Mechanical Indeterminism?

  • Chapter
  • First Online:
The Berlin Group and the Philosophy of Logical Empiricism

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 273))

Abstract

Reichenbach always counted the solution of Hume’s problem of induction and his anticipation of the probabilistic nature of atomic physics among the signature achievements of his European years. In this paper I argue that until 1936 Reichenbach, more than anticipating quantum mechanical indeterminism, developed a philosophical research program whose core questions were already laid out in his Ph.D. thesis of 1915. There he supplemented the principle of causality by a second principle of probabilistic and inductive nature that, during the two decades to come, assumed the lead but repeatedly changed its form from a transcendental to an empirical and back to a transcendental-pragmatic principle. Reichenbach’s exchanges with Schrödinger (in 1923/1924) and Schlick (in 1930/1931) show that his abandonment of Kantian causality was not primarily motivated by the ongoing physical developments and the relationship between statistical and quantum physics. While Schrödinger considered quantum mechanics largely as a continuation of Boltzmann’s statistical mechanics and insisted on the physical character of measurement, Schlick held instead that Heisenberg’s uncertainty relation signified a radical difference between classical fluctuation and quantum phenomena. For Reichenbach, in those days, this problem—much discussed among the physicists—was of lesser importance because he insisted on the identity between the theory of measurement error and any probabilistic physical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I translate here “Schwankungen” as ‘variations’ while I translate them as ‘fluctuations’ if they are intended as a physical process in its own right, which Reichenbach—as the present paper argues—does not assume.

  2. 2.

    I am citing both the German original and the English translation, if available. At places I have however modified the English translation to restore a terminological relationship existing in the German original. Translations from German originals, where no translation was available, are mine.

  3. 3.

    Eberhardt and Glymour here translate “einsehen” as “recognized”. I prefer “intuited” because it better captures Reichenbach’s argument; cf. the next paragraph.

  4. 4.

    In Reichenbach 1916, Eberhardt and Glymour translate “Spielraum” as “event space”, rather than the commonly used “range”. This is certainly a good choice from a contemporary perspective, but hides the psychological aspects of the concept and the fact that it represents the “free play” left by the laws of nature – a view which Reichenbach explicitly criticizes. For this reason I leave the German expression untranslated.

  5. 5.

    Made almost in passing in a 1886 address, cf. (Boltzmann 1905, 37/22).

  6. 6.

    The German Gesetzmäßigkeit or Gesetzlichkeit stand between a strict law (Gesetz) and any nomologically weaker kind of statistically established regularity (Regel or Regelmäßigkeit).

  7. 7.

    The respective passage from Kant’s Critique of Pure Reason (A 231, B 284) appears in a footnote on p. 122.

  8. 8.

    The German original reads “wirklich” (p. 120), but the editors’ translation “possible” (p. 121).

  9. 9.

    Among them Schlick’s very negative evaluation of Reichenbach’s work for the Prussian Ministry of Science, cf. Stadler (2011).

  10. 10.

    The footnote originally appears in Reichenbach (1925, 139/118).

References

  • Boltzmann, Ludwig. 1905. Populäre Schriften. Leipzig: J.A. Barth; Part. Trans. as Theoretical physics and philosophical problems, ed. Brian McGuinness. Dordrecht: Reidel, 1974.

    Google Scholar 

  • Eberhardt, Frederick. 2011. Reliability via synthetic a priori: Reichenbach’s doctoral thesis on probability. Synthese 181: 125–136.

    Article  Google Scholar 

  • Exner, Franz S. 1919. Vorlesungen über die physikalischen Grundlagen der Naturwissenschaften. Leipzig/Wien: Franz Deuticke.

    Google Scholar 

  • Fechner, Gustav T. 1897. In Kollektivmaßlehre, Leipzig: Engelmann.

    Google Scholar 

  • Frank, Philipp. 1929. Was bedeuten die gegenwärtigen physikalischen Theorien für die allgemeine Erkenntnislehre? Die Naturwissenschaften 17: 971–7 & 987–94; English Trans. in Frank 1961. 96–125.

    Google Scholar 

  • Frank, Philipp. 1932. Das Kausalgesetz und seine Grenzen. Wien: Springer; English Trans. as The law of causality and Its limits. Dordrecht: Kluwer, 1998.

    Google Scholar 

  • Frank, Philipp. 1937. Philosophische Deutungen und Mißdeutungen der Quantentheorie. Erkenntnis 6:303–317; English Trans. in Frank 1961, 158–170.

    Google Scholar 

  • Frank, Philipp. 1961. Modern science and its philosophy. New York: Collier Books.

    Google Scholar 

  • Friedman, Michael. 1994. Geometry, convention, and the relativized a priori: Reichenbach, Schlick, and Carnap. In Logic, language, and the structure of scientific theories, ed. Wesley Salmon, and Gereon Wolters. 21–34. Pittsburgh, PA–Konstanz: University of Pittsburgh Press–Universitätsverlag Konstanz.

    Google Scholar 

  • Galavotti, Maria Carla. 2011. On Hans Reichenbach’s inductivism. Synthese 181: 95–111.

    Article  Google Scholar 

  • Heidelberger, Michael. 2001. Origins of the logical theory of probability: von Kries, Wittgenstein, Waismann. International Studies in the Philosophy of Science 15: 177–188.

    Article  Google Scholar 

  • Mach, Ernst. 1883. Die Mechanik in ihrer Entwickelung. Historisch-kritisch dargestellt. Leipzig: Brockhaus; English Trans. as The science of mechanics, La Salle, IL: Open Court 1989.

    Google Scholar 

  • Padovani, Flavia. 2011. Relativizing the relativized a priori: Reichenbach’s axioms of coordination divided. Synthese 181: 41–62.

    Article  Google Scholar 

  • Reichenbach, Hans. 1916. The concept of probability in the mathematical represenation of reality. Trans. and ed. Frederick Eberhardt and Clark Glymour. Chicago: Open Court, 2008; orig. as Der Begriff der Wahrscheinlichkeit für die mathematischer Darstellung der Wirklichkeit. Zeitschrift für Philosophie und philosophische Kritik 161:210–239 & 162:9–112, 223–253.

    Google Scholar 

  • Reichenbach, Hans. 1920a. Die physikalischen Voraussetzungen der Wahrscheinlichkeitsrechnung. Die Naturwissenschaften 8:46–55; Nachtrag, 349; English Trans. in Reichenbach 1978. vol. II. 293–311.

    Google Scholar 

  • Reichenbach, Hans. 1920b. Philosophische Kritik der Wahrscheinlichkeitsrechnung. Die Naturwissenschaften 8:146–153; English Trans. in Reichenbach 1978. vol. II. 312–327.

    Google Scholar 

  • Reichenbach, Hans. 1920c. Relativitätstheorie und Erkenntnis apriori. Berlin: Springer; English Trans. as The theory of relativity and a priori knowledge, with an introduction by Maria Reichenbach, Berkeley: University of California Press 1965.

    Google Scholar 

  • Reichenbach, Hans. 1921. Review of Exner, Franz, Vorlesungen über die physikalischen Grundlagen der Naturwissenschaften. Die Naturwissenschaften 9: 414–415.

    Google Scholar 

  • Reichenbach, Hans. 1924. Axiomatik der relativistischen Raum-Zeit-Lehre. Braunschweig: Vieweg.

    Google Scholar 

  • Reichenbach, Hans. 1925. Die Kausalstruktur der Welt und der Unterschied von Vergangenheit und Zukunft. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Abteilung. 133–175; English Trans. in Reichenbach 1978. vol. II. 81–119.

    Google Scholar 

  • Reichenbach, Hans. 1929. Ziele und Wege der physikalischen Erkenntnis. In Handbuch der Physik. vol. 4. Berlin: Springer. 1–80; English Trans. in Reichenbach 1978. vol. II. 120–225.

    Google Scholar 

  • Reichenbach, Hans. 1930. Kausalität und Wahrscheinlichkeit. Erkenntnis 1:158–188; part. Trans. in Reichenbach 1978. vol. II. 333–344.

    Google Scholar 

  • Reichenbach, Hans. 1931. Das Kausalproblem in der Physik. Die Naturwissenschaften 19:713–722; English Trans. in Reichenbach 1978. vol. I. 326–42.

    Google Scholar 

  • Reichenbach, Hans. 1932a. Die Kausalbehauptung und die Möglichkeit ihrer empirischen Nachprüfung. Erkenntnis 3:32–64; English Trans. in Reichenbach 197. vol. II. 345–371.

    Google Scholar 

  • Reichenbach, Hans. 1932b. Schlußbemerkung. Erkenntnis 3: 70–71.

    Google Scholar 

  • Reichenbach, Hans. 1936. Logistic empiricism in Germany and the present state of its problems. Journal of Philosophy 33: 141–160.

    Article  Google Scholar 

  • Reichenbach, Hans. 1938. Experience and prediction. Chicago: University of Chicago Press.

    Google Scholar 

  • Reichenbach, Hans. 1944. Philosophic foundations of quantum mechanics. Berkeley: University of California Press.

    Google Scholar 

  • Reichenbach, Hans. 1956. The direction of time. Berkeley: University of California Press.

    Google Scholar 

  • Reichenbach, Hans. 1978. Selected writings 1909–1953. 2 vols. Dordrecht: Reidel.

    Google Scholar 

  • Salmon, Wesley C. 1991. Hans Reichenbach’s vindication of induction. Erkenntnis 35: 99–122.

    Google Scholar 

  • Schlick, Moritz. 1920. Naturphilosophische Betrachtungen über das Kausalprinzip. Die Naturwissenschaften 8:461–474, English Trans. in Schlick 1979. vol. I. 295–321.

    Google Scholar 

  • Schlick, Moritz. 1925a. Naturphilosophie. In Lehrbuch der Philosophie: Die Philosophie in ihren Einzelgebieten, ed. Max Dessoir, 397–492. Berlin: Ullstein. English Trans. in Schlick 1979. vol. II. 1–90.

    Google Scholar 

  • Schlick, Moritz. 1925b. Allgemeine Erkenntnislehre, 2nd ed. Berlin: Springer.

    Google Scholar 

  • Schlick, Moritz. 1931. Die Kausalität in der gegenwärtigen Physik. Die Naturwissenschaften 19:145–162; English Trans. in Schlick 1979. vol. II. 176–209.

    Google Scholar 

  • Schlick, Moritz. 1937. Quantentheorie und Erkennbarkeit der Natur. Erkenntnis 6:317–326; English Trans. in Schlick 1979. vol II. 482–490.

    Google Scholar 

  • Schlick, Moritz. 1979. In Philosophical papers, ed. Henk Mulder and Barbara F.B. van de Velde-Schlick. 2 vols. Dordrecht: Reidel.

    Google Scholar 

  • Schrödinger, Erwin. 1919. Wahrscheinlichkeitstheoretische Studien betreffend Schweidler’sche Schwankungen, besonders die Theorie der Meßanordnung. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abt. IIa, 128, 177–237.

    Google Scholar 

  • Schrödinger, Erwin. 1924. Bohrs neue Strahlungshypothese und der Energiesatz. Die Naturwissenschaften 12: 720–724.

    Article  Google Scholar 

  • Schrödinger, Erwin. 1929a. Was ist ein Naturgesetz? Die Naturwissenschaften 17:9–11; English Trans. by James Murphy and W.H. Johnston as Science and the human temperament, 133–147. New York: W. W. Norton & Co.

    Google Scholar 

  • Schrödinger, Erwin. 1929b. Aus der Antrittsrede des neu in die Akademie eintretenden Herrn Schrödinger. Die Naturwissenschaften 17: 732; English Trans. in the Introd. to Science and the human temperament, xiii–xviii.

    Google Scholar 

  • Schrödinger, Erwin. 1932. Anmerkungen zum Kausalproblem. Erkenntnis 3: 65–70.

    Article  Google Scholar 

  • Schrödinger, Erwin. 1934. Über die Unanwendbarkeit der Geometrie im Kleinen. Die Naturwissenschaften 22: 518–520.

    Article  Google Scholar 

  • Stadler, Friedrich. 2011. The road to Experience and Prediction from within: Hans Reichenbach’s scientific correspondence from Berlin to Istanbul. Synthese 181: 137–155.

    Article  Google Scholar 

  • Stöltzner, Michael. 2009. The logical empiricists. In Oxford handbook of causation, ed. Helen Beebee, Christopher Hitchcock, and Peter Menzies, 108–127. Oxford: Oxford University Press.

    Google Scholar 

  • Stöltzner, Michael. 2012a. Zur Genese der Schweidlerschen Schwankungen und der Brownschen Molekularbewegung. In Kernforschung in Österreich: Wandlungen eines interdisziplinären Forschungsfeldes 1900–1978, ed. Silke Fengler and Carola Sachse, 309–340. Wien: Böhlau.

    Google Scholar 

  • Stöltzner, Michael. 2012b. Erwin Schrödinger – Vienna indeterminist. In Probabilities, laws, and structures, ed. Marcel Weber et al., 481–495. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Uffink, Jos. 2007. Compendium to the foundations of classical statistical physics. In Handbook for the philosophy of physics, ed. Jeremy Butterfield and John Earman, 924–1074. Amsterdam: Elsevier.

    Google Scholar 

  • Von Kries, Johannes. 1886. Prinzipien der Wahrscheinlichkeitsrechnung. Freiburg i.B: Mohr.

    Google Scholar 

  • Von Kries, Johannes. 1919. Über Wahrscheinlichkeitsrechnung und ihre Anwendung in der Physik. Die Naturwissenschaften 7:2–7 & 17–23

    Google Scholar 

  • Von Mises, Richard. 1912. Über die Grundbegriffe der Kollektivmaßlehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 21: 9–20.

    Google Scholar 

  • Von Mises, Richard. 1919. Fundamentalsätze der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 5: 52–99 & 100.

    Article  Google Scholar 

  • Von Mises, Richard. 1922. Über die gegenwärtige Krise der Mechanik. Die Naturwissenschaften 10: 25–29.

    Article  Google Scholar 

  • Von Mises, Richard. 1930. Über kausale und statistische Gesetzmäßigkeit in der Physik. Die Naturwissenschaften 18:145–53 and In Erkenntnis 1:189–210.

    Google Scholar 

  • Von Schweidler, Egon. 1906. Ueber Schwankungen der radioaktiven Umwandlung. In Premier Congrès International pour l’étude de la Radiologie et de l’Ionisation, tenue à Liège du 12 au 14 Septembre 1905. Comptes Rendus Section de PhysiqueLangue allemande, Paris: H. Dunod & E. Pinat, 1–3.

    Google Scholar 

  • Von Smoluchowski, Marian. 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik 326: 756–780.

    Article  Google Scholar 

  • Waismann, Friedrich. 1930. Logische Analyse des Wahrscheinlichkeitsbegriffs. Erkenntnis 1: 228–248.

    Article  Google Scholar 

  • Zilsel, Edgar, et al. 1930. Diskussion über Wahrscheinlichkeit. Erkenntnis 1: 260–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stöltzner .

Editor information

Editors and Affiliations

Appendix

Appendix

figure 1

Hans Reichenbach, on March 13, 1947, in New York City (by Fred Stein)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Stöltzner, M. (2013). Did Reichenbach Anticipate Quantum Mechanical Indeterminism?. In: Milkov, N., Peckhaus, V. (eds) The Berlin Group and the Philosophy of Logical Empiricism. Boston Studies in the Philosophy and History of Science, vol 273. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5485-0_6

Download citation

Publish with us

Policies and ethics