Skip to main content

Cage Based Deformations: A Survey

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 7))

Abstract

Cage based deformation techniques aims to be an easy to use tool for graphics modeling, texturing and animation. In this paper we describe the most important methods, their foundations, and the desirable properties that they should satisfy. We also present a comparative to show the strong and weak points of each one, taking into account their distinctive utilities. Finally, we discuss some applications that exploit cage capabilities in order to create a more complex deformation system or to simplify other deformation techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barr AH (1984) Global and local deformations of solid primitives. SIGGRAPH Comput Graph 18:21–30

    Article  Google Scholar 

  2. Botsch M, Kobbelt L (2004) An intuitive framework for real-time freeform modeling. In: ACM SIGGRAPH 2004 papers, SIGGRAPH ’04. ACM, New York, NY, USA, pp 630–634

    Google Scholar 

  3. Botsch M, Kobbelt L (2005) Real-time shape editing using radial basis functions. Comput Graph Forum 24(3):611–621

    Article  Google Scholar 

  4. Cerveró MÀ, Vinacua Á, Brunet P (2010) Volume-preserving deformation using generalized barycentric coordinates. In: Procc XX Congreso Español de Informática Gráfica (CEIG-2010) pp 57–66

    Google Scholar 

  5. Chen L, Huang J, Sun H, Bao H (2010) Cage-based deformation transfer. Comput Graph 34(2):107–118

    Article  Google Scholar 

  6. Farin G (1990) Surfaces over dirichlet tessellations. Comput Aided Geom Des 7(1–4):281–292

    Article  MathSciNet  MATH  Google Scholar 

  7. Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14(3):231–250

    Article  MathSciNet  MATH  Google Scholar 

  8. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27

    Article  MathSciNet  MATH  Google Scholar 

  9. Floater MS, Kós G, Reimers M (2005) Mean value coordinates in 3d. Comput Aided Geom Des 22(7):623–631

    Article  MATH  Google Scholar 

  10. Floater M, Hormann K, Kós G (2006) A general construction of barycentric coordinates over convex polygons. Adv Comput Math 24:311–331

    Article  MATH  Google Scholar 

  11. Hiyoshi H, Sugihara K (2000) Voronoi-based interpolation with higher continuity. In: Proceedings of the sixteenth annual symposium on computational geometry, SCG ’00. ACM, New York, NY, USA, pp 242–250

    Google Scholar 

  12. Hormann K, Floater MS (2006) Mean value coordinates for arbitrary planar polygons. ACM Trans Graph 25(4):1424–1441

    Article  Google Scholar 

  13. Hormann K, Sukumar N (2008) Maximum entropy coordinates for arbitrary polytopes. Comput Graph Forum 27(5):1513–1520. doi:10.1111/j.1467-8659.2008.01292.x. http://dx.doi.org/10.1111/j.1467-8659.2008.01292.x

    Google Scholar 

  14. Huang J, Shi X, Liu X, Zhou K, Wei LY, Teng SH, Bao H, Guo B, Shum HY (2006) Subspace gradient domain mesh deformation. In: ACM SIGGRAPH 2006 papers, SIGGRAPH ’06. ACM, New York, NY, USA, pp 1126–1134

    Google Scholar 

  15. Jacobson A, Baran I, Popović J, Sorkine O (2011) Bounded biharmonic weights for real-time deformation. ACM Trans Graph 30:78:1–78:8

    Google Scholar 

  16. Joshi P, Tien WC, Desbrun M, Pighin F (2005) Learning controls for blend shape based realistic facial animation. In: ACM SIGGRAPH 2005 courses, SIGGRAPH ’05. ACM, New York, NY, USA

    Google Scholar 

  17. Joshi P, Meyer M, DeRose T, Green B, Sanocki T (2007) Harmonic coordinates for character articulation. ACM Trans Graph 26:71

    Article  Google Scholar 

  18. Ju T, Schaefer S, Warren J, (2005) Mean value coordinates for closed triangular meshes. In: ACM SIGGRAPH 2005 papers, SIGGRAPH ’05. ACM, New York, NY, USA, pp 561–566

    Google Scholar 

  19. Ju T, Zhou QY, van de Panne M, Cohen-Or D, Neumann U (2008) Reusable skinning templates using cage-based deformations. ACM Trans Graph 27:122:1–122:10

    Google Scholar 

  20. Lewis JP, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques, SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp 165–172

    Google Scholar 

  21. Lipman Y, Kopf J, Cohen-Or D, Levin D (2007) Gpu-assisted positive mean value coordinates for mesh deformations. In: Proceedings of the fifth Eurographics symposium on geometry processing. Eurographics Association, Aire-la-Ville, Switzerland, pp 117–123

    Google Scholar 

  22. Lipman Y, Levin D, Cohen-Or D (2008) Green coordinates. ACM Trans Graph 27:78:1–78:10

    Google Scholar 

  23. Malsch EA, Dasgupta G (2004) Interpolations for temperature distributions: a method for all non-concave polygons. Int J Solids Struct 41(8):2165–2188. doi:10.1016/j.ijsolstr.2003.11.037

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer M, Lee H, Barr A, Desbrun M (2005) Generalized barycentric coordinates on irregular polygons. Computer 7(1):0–4

    Google Scholar 

  25. Möbius AF (1827) Der barycentrische Calcül. Georg Olms Verlag

    Google Scholar 

  26. Peng Q, Jin X, Feng J (1997) Arc-length-based axial deformation and length preserved animation. Comput Animat'97. Conference Publications, pp 86–92

    Google Scholar 

  27. Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. SIGGRAPH Comput Graph 20:151–160

    Article  Google Scholar 

  28. Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 21–36

    Google Scholar 

  29. Singh K, Eugene F (1998) Wires: a geometric deformation technique. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, SIGGRAPH ’98. ACM, New York, NY, USA, pp 405–414

    Google Scholar 

  30. Sorkine O (2006) Differential representations for mesh processing. Comput Graph Forum 25(4):789–807

    Article  Google Scholar 

  31. Sukumar N, Malsch E (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13:129–163

    Article  MathSciNet  MATH  Google Scholar 

  32. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques, SIGGRAPH ’87. ACM, New York, NY, USA, pp 205–214

    Google Scholar 

  33. Wachspress E (1975) A rational finite element basis. Academic Press, New York

    MATH  Google Scholar 

  34. Weber O, Ben-Chen M, Gotsman C (2009) Complex barycentric coordinates with applications to planar shape deformation. Comput Graph Forum 28(2):587–597

    Article  Google Scholar 

  35. Xian C, Lin H, Gao S (2012) Automatic cage generation by improved obbs for mesh deformation. Vis Comput 28(1):21–33

    Google Scholar 

Download references

Acknowledgments

We are grateful to Pedro García, John Grieco and Guillermo Posadas for helping us to enrich the text with their corrections. This work was partially supported by TIN2010-20590-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Susín .

Editor information

Editors and Affiliations

Appendix

Appendix

First, we expose Green coordinates pseudocode, extracted from Lipman’s paper [22]. The 2D and 3D version for deforming object vertexes \(\varLambda \subset C^{in}\). We have changed \(\phi _{i}(v)\) from the original paper by \(\omega _{i}(v)\) to keep coherence all over the document. We note that for exterior or boundary points one should add to these coordinates the \(\{\alpha _{k}\}\) and \(\beta \) as is introduced in Sect. 6.2, and explained in depth in Sect. 4 of Lipman’s paper. Note that \(\alpha _{k}\) and \(\beta \) also posses a simple closed-form formula employing the regular barycentric coordinates in triangles (3D) or edges (2D).

figure a1

Harmonic Coordinates implementation is exposed in the corresponding Sect. 4.1, there is no pseudocode in the paper. Finally, Mean Value Coordinates pseudocode from Ju’s paper [18] is presented. It is written for value interpolation, but with some modifications could be adapted for mesh deformation.

figure a2
figure a3

 

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nieto, J.R., Susín, A. (2013). Cage Based Deformations: A Survey. In: González Hidalgo, M., Mir Torres, A., Varona Gómez, J. (eds) Deformation Models. Lecture Notes in Computational Vision and Biomechanics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5446-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5446-1_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5445-4

  • Online ISBN: 978-94-007-5446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics