Skip to main content

A Simplified Model for Soot Formation in Gas Turbine Combustion Chambers

  • Chapter
  • First Online:
Book cover Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

  • 4582 Accesses

Abstract

Soot resulting from combustion processes is known to have a negative impact on health and environment. Soot also may lead to material damages especially in gas turbines. Therefore, a deeper insight in the processes leading to the formation and consumption of the soot precursors and soot particles is needed. For describing these processes a reaction kinetical model is needed representing the different steps. The processes happening in the gas phase are described by elementary chemical reactions, whereas for the particle phase a more complex formalism is needed due to the enormous number of different particles possible. In this work the processes in the particle phase are represented by the detailed soot model. A kinetical description of the processes is developed along with a mathematical representation of the model. This is done for shock tube conditions that can be assumed to be spatially homogeneous, allowing to focus on models of the chemical processes. In a next step this model is implemented for laminar flame conditions. Here additional transport phenomena are considered which helps improving gas phase and particle reaction models for representing soot formation in practical combustion devices. Besides giving a deeper insight into soot formation processes, the detailed soot model is needed for calibrating and adjusting a simplified soot model. This is used for simulating soot formation in complex technical systems like gas turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agafonov, G.L., Naydenova, I., Vlasov, P.A., Warnatz, J.: Detailed kinetic modeling of soot formation in shock tube pyrolysis and oxidation of toluene and n-heptane. Proc. Combust. Inst. 31, 575–583 (2007)

    Article  Google Scholar 

  2. Appel, J., Bockhorn, H., Frenklach, M.: Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame 121, 122–136 (2000)

    Article  Google Scholar 

  3. D’Anna, A., Violi, A.: Detailed modeling of the molecular growth process in aromatic and aliphatic premixed flames. Energy Fuel 19, 79–86 (2005)

    Article  Google Scholar 

  4. Richter, H., Granata, S., Green, W.H., Howard, J.B.: Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst. 30, 1397–1405 (2005)

    Article  Google Scholar 

  5. Frenklach, M.: Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002)

    Article  Google Scholar 

  6. Wang, H., Frenklach, M.: A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame 110, 173–221 (1997)

    Article  Google Scholar 

  7. Smoluchowski, M.V.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Loesungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  8. Haynes, B.S., Wagner, H.G.: Soot formation. Progr. Energ Combust. Sci. 7, 229–273 (1981)

    Article  Google Scholar 

  9. Neoh, K.G., Howard, J.B., Sarofim, A.F.: Effect of oxidation on the physical structure of soot. Proc. Combust. Inst. 20, 951–957 (1985)

    Google Scholar 

  10. Lucht, R.P., Sweeney, D.W., Laurendeau, N.M.: Laser-saturated fluorescence measurements of hydroxyl radical in atmospheric pressure methane/oxygen/nitrogen flames under sooting and non-sooting conditions. Combust. Sci. Tech. 42, 259–281 (1985)

    Article  Google Scholar 

  11. Frenklach, M., Clary, D.W., Yuan, T., Gardiner, W.C., Stein, S.E.: Mechanism of soot formation in acetylene-oxygen mixtures. Combust. Sci. Technol. 50, 79–115 (1986)

    Article  Google Scholar 

  12. Richter, H., Howard, J.B.: Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phys. Chem. Chem. Phys. 4, 2038–2055 (2002)

    Article  Google Scholar 

  13. Skjøth-Rasmussen, M.S., Glarborg, P., Østberg, M., Johannessen, J.T., Livbjerg, H., Jensen, A.D., Christensen, T.S.: Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combust. Flame 136, 91–128 (2004)

    Article  Google Scholar 

  14. D’Alessio, A., D’Anna, A., Minutolo, P., Sgro, L.A., Violi, A.: On the relevance if surface growth in soot formation in premixed flames. Proc. Combust. Inst. 28, 2547–2554 (2000)

    Article  Google Scholar 

  15. Violi, A., Sarofim, A.F., Voth, A.F., Voth, G.A.: Kinetic Monte Carlo-molecular dynamics approach to model soot inception. Combust. Sci. Technol. 176, 991–1005 (2004)

    Article  Google Scholar 

  16. Violi, A.: Modeling of soot particle inception in aromatic and aliphatic premixed flames. Combust. Flame 139, 279–287 (2004)

    Article  Google Scholar 

  17. Frenklach, M., Wang, H.: Detailed modeling of soot particle nucleation and growth. Proc. Comb. Inst. 23, 1559–1566 (1991)

    Google Scholar 

  18. Frenklach, M., Wang, H.: In: Bockhorn, H. (ed.) Soot formation in combustion, pp. 165–192. Springer, Berlin/London (1994)

    Google Scholar 

  19. Vlasov, P.A., Warnatz, J.: Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves. Proc. Combust. Inst 29, 2335–2341 (2002)

    Article  Google Scholar 

  20. Correa, C., Niemann, H., Schramm, B., Warnatz, J.: Reaction mechanism reduction for higher hydrocarbons by the ILDM mehod. Proc. Combust. Inst. 28, 1607–1614 (2000)

    Article  Google Scholar 

  21. Vlasov, P.A., Warnatz, J., Naydenova, I.: Kinetic Modeling of the soot formation mechanism during rich oxidation of methane, propane, and n-heptane behind shock waves. Chem. Phys. Rep. 23, 36–43 (2004)

    Google Scholar 

  22. Kiefer, J.H., Sidhu, S.S., Kern, R.D., Xie, K., Chen, H., Harding, L.B.: The homogeneous pyrolysis of acetylene II: the high temperature radical chain mechansim. Combust. Sci. Technol. 82, 101–130 (1992)

    Article  Google Scholar 

  23. Kruse, T., Roth, P.: Kinetics of C2 reactions during high-temperature pyrolysis of acetylene. J. Phys. Chem. A 101, 2138–2146 (1997)

    Article  Google Scholar 

  24. Agafonov, G.L., Nullmeier, M., Vlasov, P.A., Warnatz, J., Zaslonko, I.S.: Kinetic modeling of solid carbon particle formation and thermal decomposition during carbon suboxide pyrolysis behind shock waves. Combust. Sci. Technol. 174, 185–213 (2002)

    Article  Google Scholar 

  25. Sojka, J., Warnatz, J., Vlasov, P.A., Zaslonko, I.S.: Kinetic modeling of carbon suboxide thermal decomposition and formation of soot-like particles behind shock waves. Combust. Sci. Technol. 158, 439–460 (2000)

    Article  Google Scholar 

  26. Krestinin, A.V.: Polyyne model of soot formation process. Proc. Combust. Inst. 27, 1557–1563 (1998)

    Google Scholar 

  27. Krestinin, A.V.: Detailed modeling of soot foormation in hydrocarbon pyrolysis. Combust. Flame 121, 513–524 (2000)

    Article  Google Scholar 

  28. Heghes, C.: C1-C4 hydrocarbon oxidation mechanism. Dissertation, University of Heidelberg, Germany (2006)

    Google Scholar 

  29. Burcat, A., Ruscic, B.: Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with updates from Active Thermochemical Tables. ANL-05/20 and TAE 960. Technion-IIT, Aerospace Engineering, and Argonne National Laboratory Chemistry Division (2005)

    Google Scholar 

  30. Burcat, A.: Third Millennium ideal gas and condensed phase thermochemical database for combustion. Techion Aerospace Engineering (TAE) report (2001)

    Google Scholar 

  31. Keller, A., Kovacs, R., Homann, K.: Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames. Part IV: large polycyclic aromatic hydrocarbons and their radicals in a fuel-rich benzene-oxygen flame. Phys. Chem. Chem. Phys. 2, 1667–1675 (2000)

    Google Scholar 

  32. Kern, R.D., Singh, H.J., Esslinger, M.A., Winkeler, P.W.: Product profiles observed during the pyrolysis of toluene, benzene, butadiene and acetylene. Proc. Comb. Inst. 19, 1351–1358 (1982)

    Google Scholar 

  33. Mathieu, O., Frache, G., DjebaÃ-li-Chaumeix, N., Paillard, C., Krier, G., Muller, J., Douce, F., Manuelli, P.: Characterization of adsorbed species on soot formed behind reflected shock waves. Proc. Combust. Inst. 31, 511–519 (2007)

    Google Scholar 

  34. Ackermann, J., Wulkow, M.: MACRON – A program package for macromolecular kinetics. Preprint SC 90–14. Konrad-Zuse-Zentrum fuer Informationstechnik, Berlin (1990)

    Google Scholar 

  35. Agafonov, G.L., Naydenova, I., Nullmeier, M., Vlasov, P.A., Warnatz, J.: Detailed kinetic modeling of PAH growth and soot formation in shock tube pyrolysis of benzene and ethylene. In: Proceedings of the 20th ICDERS, Montreal, Canada (2005)

    Google Scholar 

  36. Naydenova, I., Nullmeier, M., Vlasov, P.A., Warnatz, J.: Detailed kinetic modeling of soot formation in pyrolysis of benzene, acetylene and benzene/acetylene mixtures behind shock waves. In: Proceedings of the 2nd International Workshop on Trends in Numerical and Physical Modeling for Turbulent Processes in Gas Turbine Combustors (and Automotive Engines), Heidelberg (2004)

    Google Scholar 

  37. Naydenova, I., Nullmeier, M., Warnatz, J., Vlasov, P.A.: Detailed kinetic modeling of soot formation during shock-tube pyrolysis of C6H6: direct comparison with the results of time-resolved laser-induced incandescence (LII) and CW-laser extinction measurements. Combust. Sci. Technol. 176, 1667–1703 (2004)

    Article  Google Scholar 

  38. Naydenova, I., Vlasov, P.A., Warnatz, J.: Detailed kinetic modeling of soot formation in pyrolysis of benzene/acetylene/argon mixtures. ECM, Louvain-la-Neuve (2005)

    Google Scholar 

  39. Sojka, J.: Simuation der Rußbildung unter homogenen Verbrennungsbedingungen. Dissertation, Ruprecht-Karls-Universitaet Heidelberg, Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (2001)

    Google Scholar 

  40. Deuflhard, P., Wulkow, M.: Computational treatment of polyreaction kinetics by orthogonal polynomials of a discrete variable. Impact Comput. Sci. Eng. 1, 269–301 (1989)

    Article  MATH  Google Scholar 

  41. Seinfeld, J.H., Pandis, S.N.: From air pollution to climate change. In: Atmospheric chemistry and physics. Wiley, New York (1998)

    Google Scholar 

  42. Frenklach, M., Harris, S.J.: Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci. 118, 252–261 (1987)

    Article  Google Scholar 

  43. Colket, M.B., Hall, R.J.: Successes and uncertainties in modeling soot formation in Laminar, premixed flames. In: Bockhorn, H. (ed.) Soot formation in combustion, pp. 442–470. Springer, Berlin/London (1994)

    Chapter  Google Scholar 

  44. Gelbard, F., Seinfeld, J.H.: Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci. 78, 485–501 (1980)

    Article  Google Scholar 

  45. Gelbard, F., Tambour, Y., Seinfeld, J.H.: Sectional representation for simulating aerosol dynamics. J. Colloid Interface Sci. 76, 541–556 (1980)

    Article  Google Scholar 

  46. Maas, U., Warnatz, J.: Ignition processes in carbon-monoxide-hydrogen-oxygen mixtures. Proc. Combust. Inst. 22, 1695–1704 (1988)

    Google Scholar 

  47. Deuflhard, P., Nowak, U., Wulkow, M.: Recent developments in chemical computing. Comput. Chem. Eng. 14, 1249–1258 (1990)

    Article  Google Scholar 

  48. Jens Marquetand.: Simulation der Rußbildung in Flammen und Stoßrohren mit einem detaillierten und einem semi-empirischen Modell, Dissertation, Ruprecht-Karls-Universitaet Heidelberg, Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen Heidelberg (2010)

    Google Scholar 

  49. Warnatz, J.: Calculation of the structure of laminar flat flames I: flame velocity of freely propagating ozone decomposition flames. Ber. Bunsenges. Phys. Chem. 82, 193–200 (1978)

    Article  Google Scholar 

  50. Warnatz, J.: Calculation of the structure of laminar flat flames II: flame velocity of freely propagating hydrogen-air and hydrogen-oxygen flames. Ber. Bunsenges. Phys. Chem. 82, 643–649 (1978)

    Article  Google Scholar 

  51. Warnatz, J.: Calculation of the structure of laminar flat flames III: structure of burner-stabilized hydrogen-oxygen and hydrogen-fluorine flames. Ber. Bunsenges. Phys. Chem. 82, 834–841 (1978)

    Article  Google Scholar 

  52. Deuflhard, P., Nowak, U.: Efficient numerical simulation and identification of large chemical reaction systems. Ber. Bunsenges. Phys. Chem. 90, 940–946 (1986)

    Article  Google Scholar 

  53. Haynes, B.S., Wagner, H.G.: Z. Phys. Chem. 133, 201–213 (1982)

    Article  Google Scholar 

  54. Atkins, P.W.: Physical chemistry. Oxford University Press, New York (2002)

    Google Scholar 

  55. Tanke, D.: Rußbildung in der Kohlenwasserstoffpyrolyse hinter Stoßwellen. Dissertation, Universitaet Goetingen (1994)

    Google Scholar 

  56. Vasudevan, V., Davidson, D.F., Hanson, R.K.: Shock tube measurments of toluene ignition tumes. Proc. Combust. Inst. 30, 1155–1163 (2005)

    Article  Google Scholar 

  57. Bockhorn, H., Fetting, F., Wenz, H.W.: Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames. Ber. Bunsenges. Phys. Chem. 87, 1067–1073 (1983)

    Article  Google Scholar 

  58. Kellerer, H., Mueller, A., Bauer, H., Wittig, S.: Soot formation in a shock tube under elevated pressure conditions. Combust. Sci. Technol. 113–114, 67–80 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Riedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marquetand, J., Fischer, M., Naydenova, I., Riedel, U. (2013). A Simplified Model for Soot Formation in Gas Turbine Combustion Chambers. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics