Skip to main content

Plasmonic Enhancement of Light Emission and Scattering in Nanostructures

  • Conference paper
  • First Online:
Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale

Abstract

In this paper, a general consideration of nanoplasmonic enhancement of light–matter interaction is proposed in terms of incident field concentration and photon density of states concentration providing a rationale for huge enhancement factors for Raman scattering and noticeable enhancement factors for luminescence. Experimental performance of enhanced secondary emission for atomic, molecular systems, semiconductor quantum dots and inorganic microcrystals using multilayer and spatially organized metal-dielectric nanostructures is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purcell EM (1946) Spontaneous emission probabilities at radiofrequencies. Phys Rev 69:681

    Article  Google Scholar 

  2. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced raman scattering (SERS). Phys Rev Lett 78: 1667–1670

    Article  ADS  Google Scholar 

  3. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275:1102–1105

    Article  Google Scholar 

  4. Gaponenko SV, Guzatov DV (2009) Possible rationale for ultimate enhancement factors in single molecule Raman spectroscopy. Chem Phys Lett 477:411–414

    Article  ADS  Google Scholar 

  5. Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Dirac PAM (1927) The quantum theory of the emission and absorption of radiation. Proc R Soc Lond Ser A 114:243–265

    Article  ADS  MATH  Google Scholar 

  7. Chang RK, Furtak TE (eds) (1982) Surface enhanced Raman scattering. Plenum Press, New York

    Google Scholar 

  8. Kneipp K, Moskovits M, Kneipp H (eds) (2006) Surface-enhanced Raman scattering. Springer, Berlin

    Google Scholar 

  9. Gaponenko SV (2002) Effects of photon density of states on Raman scattering in mesoscopic structures. Phys Rev B 65:140303(R)

    Article  ADS  Google Scholar 

  10. Barnett SM, Loudon R (1996) Sum rule for modified spontaneous emission rates. Phys Rev Lett 77:2444–2448

    Article  ADS  Google Scholar 

  11. Guzatov DV, Klimov VV (2005) Radiative decay engineering by triaxial nanoellipsoids. Chem Phys Lett 412:341–346

    Article  ADS  Google Scholar 

  12. Novotny L, Hecht B (2007) Principles of nano-optics. Cambridge University Press, Cambridge

    Google Scholar 

  13. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Verlag, Berlin

    Google Scholar 

  14. Klimov VV (2009) Nanoplasmonics. Nauka, Moscow, in Russian

    Google Scholar 

  15. Sarychev AK, Shalaev VM (2000) Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys Rep 335:275–371

    Article  ADS  Google Scholar 

  16. Li K, Stockman MI, Bergman DJ (2003) Self-similar chains of metal nanospheres as an efficient nanolens. Phys Rev Lett 91:227402

    Article  ADS  Google Scholar 

  17. Klimov VV, Guzatov DV (2007) Optical properties of an atom in the presence of a cluster consisting of two nanospheres (invited paper). Quantum Electron 37:209–231

    Article  ADS  Google Scholar 

  18. Klyachkovskaya E, Strekal N, Motevich I, Vaschenko S, Harbachova A, Belkov M, Gaponenko S, Dais C, Sigg H, Stoica T, Grützmacher D (2001) Enhanced Raman scattering of ultramarine on Au-coated Ge/Si-nanostructures. Plasmonics 6:413–418

    Article  Google Scholar 

  19. Ozel T, Nizamoglu S, Sefunc MA, Samarskaya O, Ozel IO, Mutlugun E, Lesnyak V, Gaponik N, Eychmuller A, Gaponenko SV, Demir HV (2011) Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano 5:1328–1334

    Article  Google Scholar 

  20. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975

    Article  Google Scholar 

  21. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  Google Scholar 

  22. Kah JCY, Kho KW, Lee CGL, Sheppard CJR (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2:785–798

    Google Scholar 

  23. Ryder AG (2005) Surface enhanced Raman scattering for narcotic detection and applications in chemical biology. Curr Opin Chem Biol 9:489–493

    Article  Google Scholar 

  24. Leona M, Lombardi JR (2007) Identification of berberine in ancient and historical textiles by surface-enhanced Raman scattering. J Raman Spectrosc 38:853–858

    Article  ADS  Google Scholar 

  25. Chen K, Leona M, Vo-Dinh T (2007) Surface-enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sens Rev 27:109–120

    Article  MATH  Google Scholar 

  26. Leona M, Stenger J, Ferloni E (2006) Application of surface enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992

    Article  ADS  Google Scholar 

  27. Lau D, Livett M, Prawer S (2008) Application of surface enhanced Raman spectroscopy to the analysis of natural resins in artworks. J Raman Spectrosc 39:545–552

    Article  ADS  Google Scholar 

  28. Whitney AV, Casadio F, Van Duyne RP (2007) Identification and characterization of artists’ red dyes and their mixtures by surface-enhanced Raman spectroscopy. Appl Spectrosc 61: 994–1000

    Article  ADS  Google Scholar 

  29. Klyachkovskaya EV, Guzatov DV, Strekal ND, Vaschenko SV, Harbachova AN, Belkov MV, Gaponenko SV (2011) Enhancement of Raman scattering of light by ultramarine microcrystals in presence of silver nanoparticles. J Raman Spectrosc 43:741–744. doi:10.1002/jrs.3088

    Article  Google Scholar 

  30. Strekal N, Maskevich A, Maskevich S, Jardillier J-C, Nabiev I (2000) Selective enhancement of Raman or fluorescence spectra of biomolecules using specially annealed thick gold films. Biopolymers (Biospectroscopy) 57:325–328

    Article  Google Scholar 

  31. Ozel T, Soganci IM, Nizamoglu S, Huyal IO, Mutlugun E, Sapra S, Gaponik N, Eychmuller A, Demir HV (2008) Giant enhancement of surface-state emission in white luminophore CdS nanocrystals using localized plasmon coupling. New J Phys 10:083035

    Article  Google Scholar 

  32. Aslan K, Malyn SN, Geddes CD (2007) Metal-enhanced fluorescence from gold surfaces: angular dependent emission. J Fluoresc 17:7–13

    Article  Google Scholar 

  33. Ray K, Chowdhury MH, Lakowicz JR (2007) Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Anal Chem 79:6480–6487

    Article  Google Scholar 

  34. Aslan K, Malyn SN, Geddes CD (2008) Plasmon radiation in SEF as the reason of angular dependence: angular-dependent metal-enhanced fluorescence from silver island films. Chem Phys Lett 453:222–228

    Article  ADS  Google Scholar 

  35. Kuehn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402

    Article  ADS  Google Scholar 

  36. Bek A, Jansen R, Ringler M, Mayilo S, Klar TA, Feldmann J (2008) Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett 8:485–490

    Article  ADS  Google Scholar 

  37. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single molecule fluorescence. Phys Rev Lett 96:113002

    Article  ADS  Google Scholar 

  38. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2:1449–1452

    Article  ADS  Google Scholar 

  39. Kulakovich O, Strekal N, Artemyev M, Stupak A, Maskevich S, Gaponenko S (2006) Improved method for fluorophore deposition atop a polyelectrolyte spacer for quantitative study of distance-dependent plasmon-assisted luminescence. Nanotechnology 17:5201–5206

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Helpful discussions with Katrin Kneipp, Mark Stockman and Lucas Novotny on nano-antenna and local density of states issues are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Gaponenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gaponenko, S.V. (2013). Plasmonic Enhancement of Light Emission and Scattering in Nanostructures. In: Di Bartolo, B., Collins, J. (eds) Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5313-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5313-6_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5312-9

  • Online ISBN: 978-94-007-5313-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics