Skip to main content

Electron Momentum Distribution and Atomic Collisions

  • Conference paper
  • First Online:

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

The momentum representation of the electron wave functions is obtained for the nonrelativistic hydrogenic, the Hartree-Fock-Roothaan, the relativistic hydrogenic, and the relativistic Hartree-Fock-Roothaan models by means of Fourier transformation. All the momentum wave functions are expressed in terms of Gauss-type hypergeometric functions. The electron momentum distributions are calculated by the use of these expressions, and the relativistic effect is demonstrated. The results are applied for calculations of inner-shell ionization cross sections by charged-particle impact in the binary-encounter approximation. The relativistic effect and the wave-function effect on the ionization cross sections are discussed.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thakkar AJ (2004) Adv Chem Phys 128:303

    Article  Google Scholar 

  2. Williams BG (ed) (1977) Compton scattering: the investigation of electron momentum distributions. McGraw-Hill, New York

    Google Scholar 

  3. Weigold E, McCarthy IE (1999) Electron momentum spectroscopy. Kluwer/Plenum, New York

    Book  Google Scholar 

  4. Carbó-Dorca R, Girones X, Mezey PG (eds) (2001) Fundamentals of molecular similarity. Kluwer, Dordrecht/Plenum, New York

    Google Scholar 

  5. Vriens L (1969) In: McDaniel EW, McDowell MRC (eds) Case studies in atomic collisions physics, vol 1. North-Holland, Amsterdam, pp 335–98

    Google Scholar 

  6. Bethe HA, Salpeter EE (1977) Quantum mechanics of one and two electron systems. Plenum, New York

    Book  Google Scholar 

  7. Podolsky B, Pauling L (1929) Phys Rev 34:109

    Article  Google Scholar 

  8. Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:177

    Article  CAS  Google Scholar 

  9. Rose ME (1961) Relativistic electron theory. Wiley, New York

    Google Scholar 

  10. Rubinowicz A (1948) Phys Rev 73:1330

    Article  Google Scholar 

  11. Gradshteyn IS, Ryzhik IM (1965) Table of integrals, series and products. Academic, New York, p 711

    Google Scholar 

  12. Mukoyama T (1982) J Phys B At Mol Phys 15:L785

    Article  CAS  Google Scholar 

  13. Kagawa T. (1975) Phys Rev A 12:2245

    Article  CAS  Google Scholar 

  14. Mukoyama T, Kagawa T (1983) J Phys B At Mol Phys 16:1875

    Article  CAS  Google Scholar 

  15. Thomson JJ (1912) Philos Mag 23:449

    Article  CAS  Google Scholar 

  16. Williams EJ (1927) Nature 119:489

    Article  CAS  Google Scholar 

  17. Thomas LH (1927) Proc Camb Philos Soc 23:713

    Article  CAS  Google Scholar 

  18. Gerjuoy E (1966) Phys Rev 148:54

    Article  CAS  Google Scholar 

  19. Vriens L (1967) Proc R Soc 90:935

    Article  CAS  Google Scholar 

  20. Gryzinski M (1965) Phys Rev 138:A305, A322, A336

    Google Scholar 

  21. Rudd ME, Sautter CA, Bailey CL (1966) Phys Rev 151:20

    Article  CAS  Google Scholar 

  22. Rudd ME, Gregoire D, Crooks JB (1971) Phys Rev A 3:1635

    Article  Google Scholar 

  23. Langenberg A, van Eck J (1978) J Phys B At Mol Phys 11:1425

    Article  CAS  Google Scholar 

  24. McDowell MRC (1966) Proc R Soc 89:23

    Article  CAS  Google Scholar 

  25. Slater JC (1930) Phys Rev 36:57

    Article  CAS  Google Scholar 

  26. McLean AD, McLean RS (1981) At Data Nucl Data Tables 26:197

    Article  CAS  Google Scholar 

  27. Desclaux JP (1975) Comput Phys Commun 9:31

    Article  Google Scholar 

  28. Goldberg DA (1989) Algorithms in search of optimization and machine learning. Addison-Wesley, Reading

    Google Scholar 

  29. Talukdar B, Datta J, Chattopadhay HP (1984) J Phys B At Mol Phys 17:3211

    Article  CAS  Google Scholar 

  30. Kamiya M, Ishii K, Sera K, Morita S, Tawara H (1977) Phys Rev A 16:2295

    Article  CAS  Google Scholar 

  31. Mukoyama T (1984) J Phys Soc Jpn 53:2219

    Article  CAS  Google Scholar 

  32. Brandt W, Lapicki G (1979) Phys Rev A 20:465

    Article  CAS  Google Scholar 

  33. Mukoyama T, Kaji H, Yoshihara K (1990) Bull Inst Chem Res Kyoto Univ 68:177

    CAS  Google Scholar 

  34. Cohen DD (1984) Nucl Instrum Methods B3:47

    Google Scholar 

  35. Semaniak T, Braziewicz J, Pajek M, Gzyzewski T, Glowacka L, Jaskola M, Kobzev AP, Trautmann D (1992) Int J PIXE 2:241

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Bilateral Joint Research Project between the Japan Society for the Promotion of Science and the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Mukoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mukoyama, T. (2012). Electron Momentum Distribution and Atomic Collisions. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_9

Download citation

Publish with us

Policies and ethics