Skip to main content

Molecular Parity Violation and Chirality: The Asymmetry of Life and the Symmetry Violations in Physics

  • Conference paper
  • First Online:

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

After a brief introduction into some basic asymmetries observed in nature, such as the biomolecular homochirality in living species on earth, the dominance of matter over antimatter in the observable universe, and irreversibility in physical-chemical processes providing a preferred arrow of time, we provide a discussion of the concepts of fundamental symmetries in physics and of the three different kinds of symmetry breakings, spontaneous, de facto, and de lege, by means of the example of the dynamics of chiral molecules. We then give a brief review of the current status of the theory and experiments on molecular parity violation. We discuss the various hypotheses on the origin of biomolecular homochirality and conclude with some cosmological speculations related to the fundamental symmetry breakings. These include possibilities of observing CPT violation in future experiments providing a possible fundamental basis for irreversibility, as well as possibilities for observing heavy “right-handed” neutrinos as one possible basis for “dark matter” in the universe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eigen M: Stufen zum Leben. Piper, München (1987), The original is in German: „Natürlich gibt es – und zwar nicht nur in bezug auf die historischen Rahmenbedingungen – noch viele offene Fragen, zum Beispiel: Auf welcher Ebene wurde die Händigkeit oder Chiralität der biologischen Makromoleküle entschieden? Wir wissen, daß alle Proteine – soweit sie durch den informations-gesteuerten Syntheseapparat der Zelle produziert werden – ausschliesslich von „links-händigen“ Aminosäuren Gebrauch machen und daher links-gewendelte Strukturen aufbauen. Bei den Nukleinsäuren sind es die „rechts-händigen“ Monomere, die ausgewählt wurden, die allerdings sowohl rechts- als auch links-gewendelte Doppelspiralen ausbilden.“ … „„ Hier gibt es eher ein Zuviel als ein Zuwenig an Antworten. Wir stehen nicht etwa vor irgendeinem Paradoxon, für das es keine Erklärungsmöglichkeiten gäbe. Das Problem ist, daß Physik und Chemie ein Überangebot an alternativen Erklärungen bereit halten. Obwohl Forschergruppen in aller Welt an Fragestellungen dieser Art arbeiten, sind bisher nur wenige der möglichen Mechanismen im Detail experimentell untersucht worden.“

    Google Scholar 

  2. Prelog V (1975) Chirality in chemistry. In: Les prix Nobel 1975, Nobel Lectures

    Google Scholar 

  3. Quack M (2011) Fundamental symmetries and symmetry violations from high resolution molecular spectroscopy: experiment and theory. In: Nishikawa K (ed) Abstract book, XVIth international workshop on quantum systems in chemistry and physics (QSCP XVI), Kanazawa, Japan, 11–17 September 2011, p 76

    Google Scholar 

  4. Quack M (2011) Die Asymmetrie des Lebens und die Symmetrieverletzungen der Physik: Molekulare Paritätsverletzung und Chiralität. In: Al-Shamery K (ed) Moleküle aus dem All? Wiley-VCH, Weinheim, pp 277–310

    Google Scholar 

  5. Quack M (2011) Fundamental symmetries and symmetry violations from high resolution spectroscopy. In: Quack M, Merkt F (eds) Handbook of high resolution spectroscopy, vol 1. Wiley, Chichester/New York, pp 659–722

    Chapter  Google Scholar 

  6. Quack M, Merkt F (eds) (2011) Handbook of high resolution spectroscopy. Wiley, Chichester/New York

    Google Scholar 

  7. Merkt F, Quack M (2011) Molecular quantum mechanics and molecular spectra, molecular symmetry, and interaction of matter with radiation. In: Quack M, Merkt F (eds) Handbook of high-resolution spectroscopy, vol 1. Wiley, Chichester, pp 1–55

    Google Scholar 

  8. Pasteur L (1848) C R Hebd Séances Acad Sci 26:535

    Google Scholar 

  9. Pasteur L (1848) C R Hebd Séances Acad Sci 27:401

    Google Scholar 

  10. Pasteur L (1848) Ann Chim Phys 24:442

    Google Scholar 

  11. Van’t Hoff JH (1887) La chimie dans l’espace. Bazendijk, Rotterdam

    Google Scholar 

  12. Quack M, Stohner J (2000) Influence of parity violating weak nuclear potentials on vibrational and rotational frequencies in chiral molecules. Phys Rev Lett 84(17):3807–3810

    Article  CAS  Google Scholar 

  13. Quack M (2002) Angew Chem Int Ed (Engl) 41:4618–4630

    Google Scholar 

  14. Dine M, Kusenko A (2004) Rev Mod Phys 76(1):1–30

    Article  CAS  Google Scholar 

  15. Quack M (1999) Intramolekulare Dynamik: Irreversibilität, Zeitumkehrsymmetrie und eine absolute Moleküluhr. Nova Acta Leopoldina 81(Neue Folge (No. 314)):137–173

    Google Scholar 

  16. Quack M (1989) Angew Chem Int Ed (Engl) 28(5):571–586

    Google Scholar 

  17. Quack M (1993) Die Symmetrie von Zeit und Raum und ihre Verletzung in molekularen Prozessen. In: Jahrbuch 1990–1992 der Akademie der Wissenschaften zu Berlin. W. de Gruyter Verlag, Berlin, pp 467–507

    Google Scholar 

  18. Quack M (1993) J Mol Struct 292:171–195

    Article  CAS  Google Scholar 

  19. Quack M (1995) Molecular femtosecond quantum dynamics between less than yoctoseconds and more than days: experiment and theory. In: Manz J, Woeste L (eds) Femtosecond chemistry, Proceedings of Berlin conference in femtosecond chemistry, Berlin (March 1993). Verlag Chemie, Weinheim, pp 781–818

    Google Scholar 

  20. Quack M (1995) The symmetries of time and space and their violation in chiral molecules and molecular processes. In: Costa G, Calucci G, Giorgi M (eds) Conceptual tools for understanding nature. Proceedings of 2nd international symposium of science and epistemology seminar, Trieste April 1993. World Scientific Publishing, Singapore, pp 172–208

    Google Scholar 

  21. Quack M, Stohner J (2005) Chimia 59(7–8):530–538

    Article  CAS  Google Scholar 

  22. Quack M, Stohner J, Willeke M (2008) Annu Rev Phys Chem 59:741–769

    Article  CAS  Google Scholar 

  23. Quack M (2003) Chimia 57(4):147–160

    Google Scholar 

  24. Quack M (1977) Mol Phys 34(2):477–504

    Article  CAS  Google Scholar 

  25. Quack M (1983) Detailed symmetry selection rules for chemical reactions. In: Maruani J, Serre J (eds) Symmetries and properties of non-rigid molecules: a comprehensive survey, vol 23: Studies in physical and theoretical chemistry, vol 23. Elsevier Publishing Co., Amsterdam, pp 355–378

    Google Scholar 

  26. Quack M (1995) J Mol Struct 347:245–266

    Article  CAS  Google Scholar 

  27. Mainzer K (1988) Symmetrien der Natur. Ein Handbuch zur Natur- und Wissenschaftsphilosophie. de Gruyter, Berlin

    Book  Google Scholar 

  28. Lee TD (1988) Symmetries, asymmetries and the world of particles. University of Washington Press, Seattle

    Google Scholar 

  29. Quack M (1994) On the measurement of CP-violating energy differences in matter-antimatter enantiomers. Chem Phys Lett 231(4–6):421–428

    Article  CAS  Google Scholar 

  30. Kuhn B, Rizzo TR, Luckhaus D, Quack M, Suhm MA (1999) J Chem Phys 111(6):2565–2587

    Article  CAS  Google Scholar 

  31. Primas H (1981) Chemistry, quantum mechanics and reductionism. Springer, Berlin

    Google Scholar 

  32. Pfeifer P (1983) Molecular structure derived from first-principles quantum mechanics: two examples. In: Hinze J (ed) Energy storage and redistribution in molecules, Proceedings of two workshops, Bielefeld, June 1980. Plenum Press, New York, pp 315–326

    Google Scholar 

  33. Hund F (1927) Z Physik 43:788–804

    Article  CAS  Google Scholar 

  34. Hund F (1927) Z Physik 43:805–826

    Article  CAS  Google Scholar 

  35. Amann A (1991) J Math Chem 6(1):1–15

    Google Scholar 

  36. Fehrensen B, Luckhaus D, Quack M (1999) Chem Phys Lett 300(3–4):312–320

    Article  CAS  Google Scholar 

  37. Fehrensen B, Luckhaus D, Quack M (2007) Chem Phys 338(2–3):90–105

    Article  CAS  Google Scholar 

  38. Quack M (2004) Time and time reversal symmetry in quantum chemical kinetics. In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry. A tribute to the memory of Per-Olov Löwdin, vol 3. Kluwer Academic Publishers, Dordrecht, pp 423–474

    Google Scholar 

  39. Quack M (2006) Electroweak quantum chemistry and the dynamics of parity violation in chiral molecules. In: Naidoo KJ, Brady J, Field MJ, Gao J, Hann M (eds) Modelling molecular structure and reactivity in biological systems, Proceedings of 7th WATOC congress, Cape Town January 2005. Royal Society of Chemistry, Cambridge, pp 3–38

    Google Scholar 

  40. Bakasov A, Ha TK, Quack M (1996) Ab initio calculation of molecular energies including parity violating interactions. In: Chela-Flores J, Raulin F (eds) Chemical evolution, physics of the origin and evolution of life, Proceedings of the 4th Trieste conference (1995). Kluwer Academic Publishers, Dordrecht, pp 287–296

    Google Scholar 

  41. Bakasov A, Ha TK, Quack M (1998) J Chem Phys 109(17):7263–7285

    Article  CAS  Google Scholar 

  42. Bouchiat MA, Bouchiat C (1975) Journal De Physique 36(6):493–509

    Article  CAS  Google Scholar 

  43. Hegström RA, Rein DW, Sandars PGH (1980) J Chem Phys 73(5):2329–2341

    Article  Google Scholar 

  44. Mason SF, Tranter GE (1984) The parity-violating energy difference between enantiomeric molecules. Mol Phys 53(5):1091–1111

    Article  CAS  Google Scholar 

  45. MacDermott AJ, Tranter GE, Indoe SB (1987) Chem Phys Lett 135(1–2):159–162

    Article  CAS  Google Scholar 

  46. Mason SF (1991) Chemical evolution: origins of the elements, molecules and living systems. Clarendon Press, Oxford

    Google Scholar 

  47. Bakasov A, Quack M (1999) Chem Phys Lett 303(5–6):547–557

    Article  CAS  Google Scholar 

  48. Berger R, Quack M (2000) J Chem Phys 112(7):3148–3158

    Article  CAS  Google Scholar 

  49. Bakasov A, Berger R, Ha TK, Quack M (2004) Int J Quantum Chem 99(4):393–407

    Article  CAS  Google Scholar 

  50. Quack M (1986) Chem Phys Lett 132(2):147–153

    Article  CAS  Google Scholar 

  51. Berger R, Quack M (2000) ChemPhysChem 1(1):57–60

    Google Scholar 

  52. Berger R (2004) Parity-violation effects in molecules. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, vol. Part 2. Elsevier, Amsterdam, pp 188–288

    Chapter  Google Scholar 

  53. Laerdahl JK, Schwerdtfeger P (1999) Phys Rev A 60(6):4439–4453

    Article  CAS  Google Scholar 

  54. Berger R, Langermann N, van Wüllen C (2005) Phys Rev A 71(4):042105

    Article  Google Scholar 

  55. Horný L, Quack M (2011) On coupled cluster calculations of parity violating potentials in chiral molecules (Discussion contribution). Faraday Discuss 150:152–154

    Google Scholar 

  56. Quack M (2011) Frontiers in spectroscopy. Faraday Discuss 150:533–565 (see also pp 123–127 therein)

    Google Scholar 

  57. Gottselig M, Quack M, Stohner J, Willeke M (2004) Int J Mass Spectrom 233(1–3):373–384

    CAS  Google Scholar 

  58. Quack M, Willeke M (2006) J Phys Chem A 110(9):3338–3348

    Article  CAS  Google Scholar 

  59. Quack M, Willeke M (2003) Helv Chim Acta 86(5):1641–1652

    Article  CAS  Google Scholar 

  60. Gottselig M, Luckhaus D, Quack M, Stohner J, Willeke M (2001) Helv Chim Acta 84(6): 1846–1861

    Article  CAS  Google Scholar 

  61. Berger R, Gottselig M, Quack M, Willeke M (2001) Angew Chem Int Ed 40(22):4195–4198

    Article  CAS  Google Scholar 

  62. Gottselig M, Quack M, Willeke M (2003) Isr J Chem 43(3–4):353–362

    Article  CAS  Google Scholar 

  63. Wiesenfeld L (1988) Mol Phys 64(4):739–745

    Article  CAS  Google Scholar 

  64. Beil A, Luckhaus D, Marquardt R, Quack M (1994) Faraday Discuss 99:49–76

    Article  CAS  Google Scholar 

  65. Hollenstein H, Luckhaus D, Pochert J, Quack M, Seyfang G (1997) Angew Chem Int Edit 36(1–2):140–143

    Article  CAS  Google Scholar 

  66. Bauder A, Beil A, Luckhaus D, Müller F, Quack M (1997) J Chem Phys 106(18):7558–7570

    Article  CAS  Google Scholar 

  67. Frank FC (1953) Biochim Biophys Acta 11:459–463

    Article  CAS  Google Scholar 

  68. Eigen M, Winkler R (1975) Das Spiel. Piper, München

    Google Scholar 

  69. Eigen M (1971) Naturwissenschaften 58:465–523

    Article  CAS  Google Scholar 

  70. Bolli M, Micura R, Eschenmoser A (1997) Chem Biol 4(4):309–320

    Article  CAS  Google Scholar 

  71. Siegel JS (1998) Chirality 10(1–2):24–27

    Google Scholar 

  72. Fuss W (2009) Chirality 21(2):299–304

    Google Scholar 

  73. Luisi PL (2006) The emergence of life. Cambridge University Press, Cambridge

    Book  Google Scholar 

  74. Bonner WA (1995) Orig Life Evol Biosph 25(1–3):175–190

    Article  CAS  Google Scholar 

  75. Kavasmaneck PR, Bonner WA (1977) J Am Chem Soc 99(1):44–50

    Article  CAS  Google Scholar 

  76. Kuhn H, Waser J (1983) Self organization of matter and the early evolution of life. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Springer, Berlin

    Google Scholar 

  77. Meierhenrich U (2008) Aminoacids and the asymmetry of life. Springer, Berlin

    Google Scholar 

  78. Salam A (1992) Phys Lett B 288(1–2):153–160

    CAS  Google Scholar 

  79. Salam A (1995) On biological macromolecules and the phase transitions they bring about. In: Costa G, Calucci G, Giorgi M (eds) Conceptual tools for understanding nature. Proceedings 2nd international symposium of science and epistemology seminar, Trieste 1993. World Scientific Publishing, Singapore

    Google Scholar 

  80. Chela-Flores J (1991) Chirality 3(5):389–392

    Google Scholar 

  81. Yamagata Y (1966) J Theor Biol 11:495–498

    Article  CAS  Google Scholar 

  82. Rein DW (1974) J Mol Evol 4(1):15–22

    Article  CAS  Google Scholar 

  83. Kondepudi DK, Nelson GW (1985) Nature 314(6010):438–441

    Google Scholar 

  84. Janoschek R (1991) Theories on the origin of biomolecular homochirality. In: Janoschek R (ed) Chirality – from weak bosons to the α-helix. Springer, Berlin, pp 18–33

    Google Scholar 

  85. Monod J (1970) Le Hasard et la Nécessité – Essai sur la philosophie naturelle de la biologie moderne. Editions du Seuil, Paris

    Google Scholar 

  86. Quack M (1990) Philos Trans Roy Soc Lond A 332(1625):203–220

    Article  CAS  Google Scholar 

  87. Jäckel C, Kast P, Hilvert D (2008) Ann Rev Biophys 37:153–173

    Article  Google Scholar 

  88. Reetz MT (2011) Die Evolutionsmaschine als Quelle für selektive Biokatalysatoren. In: Al-Shamery K (ed) Moleküle aus dem All? Wiley-VCH, Weinheim, pp 241–273

    Google Scholar 

  89. The “dark matter” should be distinguished from the so-called dark energy which is discussed briefly by M. Eigen in [90]. The expression “dark energy” has been introduced as a result of cosmological considerations,ty. As opposed to this, the existence of “dark matter,” through its gravitational effects in the dynamics of galaxies, is confirmed by many astronomical observations, and is thought of as certain. This was concluded by Fritz Zwicky decades ago and has been confirmed many times since then. These conclusions are just as well-founded as for example the earlier conclusions about the existence of the outer planets in our solar system, by observation of their gravitational effects on the courses of the inner planets which had previously been observed. The existence of the outer planets was then later confirmed through direct observation. The gravitational effect on the observed courses of the galaxies is also confirmed in the case of dark matter. An alternative interpretation would require a modification of the laws of classical mechanics and gravitation and this is thought to be very unlikely. The nature of dark matter is not known however. Speculations range from “difficult to see” normal matter (ionized interstellar hydrogen gas or a multitude of small planets are discussed here) up to new elementary particles, which display few interactions with normal matter, but obey gravitation in a normal fashion (so-called WIMPS). There remain, of course, many fundamental debates about the existence and nature of dark matter.

    Google Scholar 

  90. Eigen M (2011) Natürliche Auslese – eine physikalische Gesetzmässigkeit. In: Al-Shamery K (ed) Moleküle aus dem all? Wiley-VCH, Weinheim, pp 225–242

    Google Scholar 

  91. Brändas EJ (2012) Arrows of time and fundamental symmetries in chemical physics. Proceedings of ISTCP VII. Int J Quantum Chem. doi:10.1002/qua.24168

    Google Scholar 

Download references

Acknowledgments

I would like to thank my colleagues, who are listed more completely in Ref. [23], and Ruth Schüpbach for her help with the manuscript. Particular thanks go to Karen Keppler Albert, who translated most of the manuscript from the previously existing German version into English. I thank also Katharina Al Shamery (née von Puttkamer) for her patience while encouraging me in the preparation of the original German manuscript, and Manfred Eigen for earlier inspiration. To him I dedicate this chapter on the occasion of his 85th birthday. Thanks go also to Erkki Brändas, Jean Maruani, and Kiyoshi Nishikawa for the invitation to Kanazawa and friendly scientific exchange, including the interesting preprint of Arrows of Time and Fundamental Symmetries in Chemical Physics by Erkki Brändas [91]. Our experimental and theoretical work on molecular chirality and parity violation is supported financially by ETH Zürich, the Swiss National Science Foundation and the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Quack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Quack, M. (2012). Molecular Parity Violation and Chirality: The Asymmetry of Life and the Symmetry Violations in Physics. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_3

Download citation

Publish with us

Policies and ethics