Skip to main content

Validation of Quantum Chemical Calculations for Sulfonamide Geometrical Parameters

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

Sulfonamide is one of the most important chemical groups in drug design because sulfonamide derivatives are stable in living cells and water soluble. In this study, we assessed the validity of quantum chemical methods and basis sets for the geometrical parameters of various sulfonamides compared to crystallographic data. Introducing f-type polarization functions into basis sets improved the geometry optimizations using Hartree-Fock, MP2, and B3LYP, indicating that f-type polarization functions play an important role in the description of chemical bonds in sulfonamide derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drew J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  Google Scholar 

  2. Supuran CT, Innocenti A, Mastrolorenzo A, Scozzafava A (2004) Antiviral sulfonamide derivatives. Mini Rev Med Chem 4:189–200

    Article  CAS  Google Scholar 

  3. Maren TH (1976) Relations between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol 16:309–327

    Article  CAS  Google Scholar 

  4. Supuran CT, Casini A, Scozzafava A (2003) Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med Res Rev 23:535–558

    Article  CAS  Google Scholar 

  5. Supuran CT (2002) Indisulam. IDrugs 5:1075–1079

    CAS  Google Scholar 

  6. Ornstein PL, Arnold MB, Allen NK, Bleisch T, Borromeo PS, Lugar CW, Leander JD, Lodge D, Schoepp DD (1996) Structure-activity studies of 6-substituted decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists. 2. Effects of distal acid bioisosteric substitution, absolute stereochemical preferences, and in vivo activity. J Med Chem 39:2232–2244

    Article  CAS  Google Scholar 

  7. Johansson A, Poliakov A, Åkerblom E, Wiklund K, Lindeberg G, Winiwarter S, Danielson UH, Samuelsson B, Hallberg A (2003) Acyl sulfonamides as potent protease inhibitors of the hepatitis C virus full-length NS3 (protease-helicase/NTPase): a comparative study of different C-terminals. Bioorg Med Chem 11:2551–2568

    Article  CAS  Google Scholar 

  8. Rönn R, Gossas T, Sabnis YA, Daoud H, Åkerblom E, Danielson UH, Sandström A (2007) Evaluation of a diverse set of potential P1 carboxylic acid bioisosteres in hepatitis C virus NS3 protease inhibitors. Bioorg Med Chem 15:4057–4068

    Article  Google Scholar 

  9. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  11. Ohwada T (2001) Nitrogen pyramidal amides and related compounds. Yakugaku Zasshi 121:65–77

    Article  CAS  Google Scholar 

  12. Parkin A, Collins A, Gilmore CJ, Wilson CC (2008) Using small molecule crystal structure data to obtain information about sulfonamide conformation. Acta Crystallogr B 64:66–77

    Article  Google Scholar 

  13. Taft CA, da Silva VB, de Paula da Silva CHT (2008) Current topics in computer-aided drug design. J Pharm Sci 97:1089–1098

    Article  CAS  Google Scholar 

  14. Cai C, Li Z, Wang W, Chen Y (2004) Advances in modeling of biomolecular interactions. Acta Pharmacol Sin 25:1–8

    CAS  Google Scholar 

  15. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem Biol Interact 171:165–176

    Article  CAS  Google Scholar 

  16. Clark M, Cramer RDI, van den Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  17. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  18. Bindal RD, Golab JT, Katzenellenbogen JA (1990) Ab initio calculations on N-methylmethanesulfonamide and methyl methanesulfonate for the development of force field torsional parameters and their use in the conformational analysis of some novel estrogens. J Am Chem Soc 112:7861–7868

    Article  CAS  Google Scholar 

  19. Nicholas JB, Vance R, Martin E, Burke BJ, Hopfinger AJ (1991) A molecular mechanics valence force field for sulfonamides derived by ab initio methods. J Phys Chem 95:9803–9811

    Article  CAS  Google Scholar 

  20. Liang G, Bays JP, Bowen JP (1997) Ab initio calculations and molecular mechanics (MM3) force field development for sulfonamide and its alkyl derivatives. J Mol Struct (THEOCHEM) 401:165–179

    Article  CAS  Google Scholar 

  21. Vijay D, Priyakumar UD, Sastry GN (2004) Basis set and method dependence of the relative energies of C2S2H2 isomers. Chem Phys Lett 383:192–197

    Article  CAS  Google Scholar 

  22. Denis PA (2005) Basis set requirements for sulfur compounds in density functional theory: a comparison between correlation-consistent, polarized-consistent, and Pople-type basis sets. J Chem Theory Comput 1:900–907

    Article  CAS  Google Scholar 

  23. Niu S, Nichols JA, Ichiye T (2009) Optimization of spin-unrestricted density functional theory for redox properties of rubredoxin redox site analogues. J Chem Theory Comput 5:1361–1368

    Article  CAS  Google Scholar 

  24. Gregory DD, Jenks WS (2003) Computational investigation of vicinal disulfoxides and other sulfinyl radical dimers. J Phys Chem A 107:3414–3423

    Article  CAS  Google Scholar 

  25. Elguero J, Goya P, Rozas I (1989) An ab initio comparative study of the electronic properties of sulfonamides and amides. J Mol Struct (THEOCHEM) 184:115–129

    Article  Google Scholar 

  26. Heyd J, Thiel W, Weber W (1997) Rotation and inversion barriers in N-methylmethanesulfonamide from ab initio calculations. J Mol Struct (THEOCHEM) 391: 125–130

    Article  CAS  Google Scholar 

  27. Stewart JJP (2001) MOPAC2002 1.0. Fujitsu Ltd, Tokyo

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  29. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER9. University of California, San Francisco

    Google Scholar 

  30. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method. J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  31. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  32. Higgs TC, Parkin A, Parsons S, Tasker PA (2002) N-Methylmethanesulfonamide at 150 K. Acta Crystallogr E 58:o523–o525

    Article  Google Scholar 

Download references

Acknowledgments

The present study was performed under the Cooperative Research Program of the Institute for Protein Research, Osaka University. Parts of the computational results in this research were obtained using supercomputing resources at the Cyberscience Center, Tohoku University; the Research Center for Computational Science, Okazaki; and the Cybermedia Center at Osaka University. Yu Takano is grateful to the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for the Grant-in-Aid for Scientific Research on Innovative Areas “Materials Design through Computics” (23104506). Akifumi Oda was supported by a Grant-in-Aid for Scientific Research (23790137) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Oda, A., Takano, Y., Takahashi, O. (2012). Validation of Quantum Chemical Calculations for Sulfonamide Geometrical Parameters. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_17

Download citation

Publish with us

Policies and ethics