Skip to main content

Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect

  • Conference paper
  • First Online:
Book cover Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

A consistent relativistic energy approach to the calculation of probabilities of cooperative electron-gamma-nuclear processes is developed. The nuclear excitation by electron transition (NEET) effect is studied. The NEET process probability and cross section are determined within the S-matrix Gell-Mann and Low formalism (energy approach) combined with the relativistic many-body perturbation theory (PT). Summary of the experimental and theoretical works on the NEET effect is presented. The calculation results of the NEET probabilities for the \( {}_{{76}}^{{189}}{\text{Os}} \), \( {}_{{77}}^{{193}}{\text{Ir}} \), and \( {}_{{79}}^{{197}}{\text{Au}} \) atoms are presented and compared with available experimental and alternative theoretical data. The theoretical and experimental study of the cooperative electron-gamma-nuclear process such as the NEET effect is expected to allow the determination of nuclear transition energies and the study of atomic vacancy effects on nuclear lifetime and population mechanisms of excited nuclear levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Letokhov VS, Goldanskii VI (1974) JETP 67:513; Goldanskii VI, Namiot VA (1976) Phys Lett 62B:393; Baldwin GG, Salem JC, Goldanskii VI (1981) Rev Mod Phys 53:687

    Google Scholar 

  2. Basov NG, Letokhov VS (1969) Sov Phys-Uspekhi 11:855; Letokhov VS (1979) In: Prokhorov AM, Letokhov VS (eds) Application of lasers in atomic, molecular and nuclear physics. Nauka, Moscow, p 412

    Google Scholar 

  3. Shahbaz A, Müller C, Bürvenich TJ, Keitel CH (2009) Nucl Phys A 821:106; Müller C, Di Piazza A, Shahbaz A, Bürvenich TJ, Evers J, Hatsagortsyan HZ, Keitel CH (2008) Laser Phys 11:175; Shahbaz A, Müller C, Staudt A, Burnevich TJ, Keitel CH (2007) Phys Rev Lett 98:263901

    Google Scholar 

  4. Burnevich TJ, Evers J, Keitel CH (2006) Phys Rev C 74:044601; (2006) Phys Rev Lett 96:142501

    Google Scholar 

  5. Ivanov LN, Letokhov VS (1975) JETP 68:1748; Ivanov LN, Letokhov VS (1985) Com Mod Phys D 4:169; Glushkov AV, Ivanov LN, Letokhov VS (1991) Preprint of Institute for Spectroscopy of USSR Academy of Sciences (ISAN), N AS-5, Troitsk

    Google Scholar 

  6. Migdal AB (1941) J Phys USSR 4:449; Levinger JS (1953) Phys Rev 90:11

    Google Scholar 

  7. Mössbauer RM (1958) Z Phys A: Hadrons Nucl 151;124; Szilard L, Chalmers T (1934) Nature (London) 134:462

    Google Scholar 

  8. Cioccheti G, Molinari A (1965) Nuovo Cim 40:69; Carlson Th, Nestor CW, Tucker TC, Malik FB (1968) Phys Rev 169:27; Kaplan IG, Smutny VN (1988) Adv Quantum Chem 19:289; Kaplan IG (1997) J Phys G: Nucl Part Phys 23:683

    Google Scholar 

  9. Amudsen P, Barker PH (1994) Phys Rev C 50:2466; Anholt R, Amundsen P (1982) Phys Rev A 25:169

    Google Scholar 

  10. Wolfgang RL, Anderson R, Dodson RW (1956) J Chem Phys 24:16; Martin Rl, Cohen JS (1985) Phys Lett A 110:95

    Google Scholar 

  11. Hansen JS (1974) Phys Rev A 9:40; Law J (1977) Nucl Phys A 286:339; (1980) Can J Phys 58:504; Law J, Campbell JL (1982) Phys Rev C 25:514

    Google Scholar 

  12. Mukoyama T, Ito Sh (1988) Phys Lett A 131:182; Mukoyama T, Shimizu S (1978) J Phys G: Nucl Part 4:1509

    Google Scholar 

  13. Kienle P (1993) Phys Scripta 46:,81; Wauters L, Vaeck N (1996) Phys Rev C 53:497; Wauters L, Vaeck N, Godefroid M, van der Hart H, Demeur M (1997) J Phys B 30:4569

    Google Scholar 

  14. Olariu S, Sinor T, Collins C (1994) Phys Rev B 50:616; Glushkov AV, Ivanov LN (1991) Preprint of Institute for Spectroscopy of USSR Academy of Sciences (ISAN), N-2AS; Glushkov AV, Svinarenko A (2010) Sensor Electr Microsyst Technol 1:13

    Google Scholar 

  15. Romanovsky M (1998) Laser Phys 1:17; Harston MR, Caroll JJ (2004) Laser Phys 7:1452; Harston MR, Chemin JF (1999) Phys Rev C 59:2462

    Google Scholar 

  16. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008). In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 18, Springer, Berlin, p 523; (2008) Eur Phys J ST 160:195; (2008) Mol Phys 106:1257

    Google Scholar 

  17. Glushkov AV, Khetselius OY, Lovett L (2010) In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures, vol 20, Progress in theoretical chemistry and physics. Springer, Berlin, pp 125–172

    Google Scholar 

  18. Glushkov AV, Khetselius OY, Svinarenko AA (2012) In: Hoggan, Brandas E, Delgado-Barrio G, Piecuch P (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics, vol 22, Progress in theoretical chemistry and physics. Springer, Berlin, pp 51–70

    Google Scholar 

  19. Morita M (1973) Progr Theor Phys 49:1574; Letokhov VS (1973) Science 180:451

    Google Scholar 

  20. Okamoto K (1980) Nucl Phys A 341:75; Cue N, Poizat J-C, Remillieux J (1989) Europhys Lett 8:19; Kimball JC, Bittel D, Cue N (1991) Phys Lett A 152:367; Yuan Z-S,Kimball JC (1993) Phys Rev C 47:323; Palffy A, Scheid W, Harman Z (2006) Phys Rev A 73:012715

    Google Scholar 

  21. Kishimoto S, Yoda Y, Seto M, Kobayashi Y, Kitao S, Haruki R, Kawauchi T, Fukutani K, Okano T (2000) Phys Rev Lett 85:1831; Kishimoto S, Yoda Y, Kobayashi Y, Kitao S, HarukiR, Seto M (2005) Nucl Phys A 748:3; Kishimoto S, Yoda Y, Kobayashi Y, Kitao S, Haruki R, Masuda R, Seto M (2006) Phys Rev C 74:031301

    Google Scholar 

  22. Ahmad I, Dunfird R, Esbensen H, Gemmell DS, Kanter EP, Run U, Siuthwirth SH (2000) Phys Rev C 61:051304; Saito T, Shinohara A, Miura T, Otozai K (1981) J Inorg Nucl Chem 43:1963; Shinohara A, Saito T, Shoji M, Yokoyama A, Baba H, Ando M, Taniguchi K (1987) Nucl Phys A 472:151; Morel P, Daugas JM, Gosselin G, Méot V, Gogny D (2004) Nucl Phys A 746:608

    Google Scholar 

  23. Tkalya EV (1992) Nucl Phys A 539:209; (2005) Phys Uspekhi 48:525; (2007) Phys Rev A 75:022509; Pisk K, Kaliman Z, Logan BA (1989) Nucl Phys A 504:103; Ljubičić A, Kekez D, Logan BA (1991) Phys Lett B 272:1

    Google Scholar 

  24. L.N. Ivanov, E.P. Ivanova, L. Knight, Phys. Rev. A 48, 4365 (1993); E.P. Ivanova, L.N. Ivanov, E.V. Aglitsky, Phys. Rep. 166, 315 (1988); E.P. Ivanova, L.N. Ivanov, JETP 83, 258 (1996); E.P. Ivanova, I.P. Grant, J. Phys. B 31, 2871 (1998).

    Google Scholar 

  25. Ivanova EP, Ivanov LN, Glushkov AV, Kramida A (1985) Phys Scripta 32:512; Glushkov AV, Ivanova EP (1986) J Quant Spectrosc Rad Transfer 36:127

    Google Scholar 

  26. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow; Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33; Glushkov AV (1992) JETP Lett 55:97; (2008) Relativistic quantum theory. In: Quantum mechanics of atomic systems. Astroprint, Odessa

    Google Scholar 

  27. Glushkov AV, Khetselius OYu, Loboda AV, Svinarenko AA (2008). In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics, progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 541; Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scripta T 135:014022

    Google Scholar 

  28. Glushkov AV, Khetselius OY, Gurnitskaya EP, Loboda AV, Florko TA, Sukharev DE, Lovett L (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics, vol 18, Progress in theoretical chemistry and physics. Springer, Berlin, p 505

    Google Scholar 

  29. Glushkov AV, Ambrosov SV, Khetselius OYu, Loboda AV, Chernyakova YuG, Svinarenko AA (2004) Nucl Phys A 734S:21; Glushkov AV, Ambrosov SV, Khetselius OYu, Loboda AV, Gurnitskaya EP (2006). In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical physics and chemistry systems. Progress in theoretical chemistry and physics, vol 15. Springer, Berlin, p 285

    Google Scholar 

  30. Khetselius OYu (2009) Int J Quant Chem 109:3330; (2009) Phys Scripta T 135:014023

    Google Scholar 

  31. Glushkov AV, Ambrosov SV, Loboda AV, Prepelitsa GP, Gurnitskaya EP (2005) Int J Quant Chem 104:562; Glushkov AV, Malinovskaya SV, Khetselius OYu, Dubrovskaya YuV, Gurnitskaya EP (2006) J Phys CS 35:425; Malinovskaya SV, Glushkov AV, Khetselius OYu, Svinarenko AA, Loboda AV, Lopatkin YuM, Nikola LV (2011) Int J Quant Chem 111:288

    Google Scholar 

  32. Dmitriev YY, Klimchitskaya GL, Labzovsky LN (1984) Relativistic effects in spectra of atomic systems. Energoatomizd, Moscow

    Google Scholar 

  33. Firestone FB (1990) Nucl Data Sheets 59:869; Artna-Cohen A (1998) Nucl Data Sheets 83:921; Wu SC, Niu H (2003) Nucl Data Sheets 100:1; Xiaolong H, Chunmei Z (2006) Nucl Data Sheets 104:283

    Google Scholar 

  34. Bohr O, Motelsson B (1971) Structure of atomic nucleus. Plenum, New York; Ring P, Schuck P (2000) The nuclear many-body problem. Springer, Heidelberg

    Google Scholar 

  35. Yang F, Hamilton JH (eds) (2010) Fundamentals of nuclear models. World Science, Singapore; Eisenberg JM, Greiner W (1970) Nuclear models. North-Holland, Amsterdam

    Google Scholar 

  36. Serot B, Walecka J (1986) Adv Nucl Phys 16:1; Bender M, Heenen P, Reinhard P (2003) Rev Mod Phys 75:121; Bloumkvist J, Wahlborn S (1960) Ark Fysic 16:545

    Google Scholar 

  37. Glushkov AV (2007). In: Krewald S, Machner H (eds) Meson-nucleon physics and the structure of the nucleon. IKP, Juelich, Germany, SLAC eConference C070910. Menlo Park, CA, USA, vol 2, p 111; Glushkov AV, Khetselius OYu, Loboda AV, Malinovskaya SV (2007) ibid. 2:118; Glushkov A, Lovett L, Khetselius O, Loboda A, Dubrovskaya Yu, Gurnitskaya E (2009) Int J Modern Phys A Part Fields Nucl Phys 24:611

    Google Scholar 

Download references

Acknowledgments

The author is very much thankful to Prof. K. Nishikawa for his invitation to present this work at the QSCP-XVI workshop (Japan). The support of the University of Freiburg (Germany) and of A. Salam ICTP Centre (Trieste, Italy) is acknowledged. The comments of the anonymous referees are very much appreciated too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Yu. Khetselius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Khetselius, O.Y. (2012). Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_11

Download citation

Publish with us

Policies and ethics