Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

Iron plays a vital role in virtually all living organisms. This element is the second most common metal after aluminum in the earth’s crust. Its abundance and the flexibility of its electronic structure made iron particularly suitable for life. Indeed, the Fe3+/Fe2+ couple covers a wide range of redox potentials which can be finely tuned by coordinated ligands, conferring on it a key catalytic role in various fundamental metabolic pathways. However, as ferrous iron catalyzes the production of cell-damaging reactive oxygen species OH° via the Fenton reaction, excess iron or incorrect storage of this metal can be deleterious to organisms. Despite its abundance, iron is not easily bioavailable under aerobic conditions because the oxidized ferric form displays low solubility. Confronted with shortages of iron, organisms with aerobic lifestyles express specific mechanisms for its acquisition. Thus, iron is often a stake in competition between organisms of the same ecological niche and holds a peculiar position at the microbe–host interface. This chapter illustrates the importance of this metal in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews SC (1998) Iron storage in bacteria. Adv Microb Physiol 40:281–351

    Article  CAS  Google Scholar 

  • Barton LB, Abadia J (2006) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht

    Book  Google Scholar 

  • Briat JF, Duc C, Ravet K, Gaymard F (2010) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814

    Article  CAS  Google Scholar 

  • Bullen JJ (1981) The significance of iron in infection. Rev Infect Dis 3:1127–1138

    Article  CAS  Google Scholar 

  • Budzikiewicz H (2010) Microbial siderophores. Fortschr Chem Org Naturst 92:1–75

    Article  CAS  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Phil Trans R Soc B 361:1819–1836

    Article  CAS  Google Scholar 

  • Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5:717–727

    Article  CAS  Google Scholar 

  • Dietrich LE, Tice MM, Newman DK (2006) The co-evolution of life and earth. Curr Biol 16:R395–R400

    Article  CAS  Google Scholar 

  • Expert D, Enard C, Masclaux D (1996) The role of iron in pathogenic plant-microbe interactions. Trends Microbiol 4:232–236

    Article  CAS  Google Scholar 

  • Expert D, Gill PR (1991) Iron: a modulator of bacterial virulence and symbiotic nitrogen fixation. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press Inc, Boca Raton

    Google Scholar 

  • Franza T, Expert D (2010) Iron uptake in soft rot Erwinia. In: Cornelis P, Andrews SC (eds) Iron uptake in microorganisms. Horizon Press, Norfolk

    Google Scholar 

  • Gkouvatsos K, Papanikolaou G, Pantopoulos K (2011) Regulation of iron transport and the role of transferring. Biochim Biophys Acta. doi:10.1016/j.bbagen.2011.10.013

    Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38

    Article  CAS  Google Scholar 

  • Huber C, Wachtershaüser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni) S under primordial conditions. Science 276:245–247

    Article  CAS  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron- deficiency responses in dicotyledonous plants. Mol Plant 5:27–42

    Article  CAS  Google Scholar 

  • Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109:4536–4552

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kobayashi T, Nakanishi H, Nishizawa K (2010) Recent insights into iron homeostasis and their application in graminaceous crops. Proc Jpn Acad Ser 86:900–913

    Article  CAS  Google Scholar 

  • Kornitzer D (2009) Fungal mechanisms for host iron acquisition. Curr Op Microbiol 12:377–383

    Article  CAS  Google Scholar 

  • Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804

    Article  CAS  Google Scholar 

  • Labbé S, Pelletier B, Mercier A (2007) Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 20:523–537

    Article  CAS  Google Scholar 

  • Lemanceau P, Alabouvette C (1993) Suppression of fusarium wilt by fluorescent pseudomonads mechanisms and applications. Biocontrol Sci Technol 3:219–234

    Article  Google Scholar 

  • Leong SA, Neilands JB (1982) Siderophore production by phytopathogenic microbial species. Arch Biochem Biophys 218:351–359

    Article  CAS  Google Scholar 

  • Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5:821–840

    Article  CAS  Google Scholar 

  • Litwin CM, Calderwood SB (1993) Role of iron in regulation of virulence genes. Clin Microbiol Rev 6:137–149

    CAS  Google Scholar 

  • Loeppert RH, Wei LC, Ocumpaugh WR (1994) Soil factors influencing the mobilization of iron in calcareous soils. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 343–355

    Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  CAS  Google Scholar 

  • Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron—a metal at the host-pathogen interface. Cell Microbiol 12:1691–1702

    Article  CAS  Google Scholar 

  • Neilands JB (1991) A brief history of iron metabolism. Biol Metals 4:1–6

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  Google Scholar 

  • O’Brian MR, Fabiano H (2010) Mechanisms and regulation of iron homeostasis in the rhizobia. In: Cornelis P, Andrews SC (eds) Iron uptake in microorganisms. Horizon Press, Norfolk

    Google Scholar 

  • Ong ST, Ho JZS, Ho B, Ding JL (2006) Iron-withholding strategy in innate immunity. Immunobiology 211:295–314

    Article  CAS  Google Scholar 

  • Payne SM (1989) Iron and virulence in shigella. Mol Microbiol 3:1301–1306

    Article  CAS  Google Scholar 

  • Raymond J, Segrè D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767

    Article  CAS  Google Scholar 

  • Robin A, Mazurier S, Mougel C, Vansuyt G, Corberand T, Meyer JM, Lemanceau P (2007) Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol 9:1724–1737

    Article  CAS  Google Scholar 

  • Rudolph G, Hennecke H, Fischer HM (2006) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648

    Article  CAS  Google Scholar 

  • Schade AL, Caroline L (1944) Raw egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae. Science 100:14

    Article  CAS  Google Scholar 

  • Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953

    Article  CAS  Google Scholar 

  • Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, Chan CS, Comolli LR, Ferriera S, Johnson J, Heidelberg JF, Edwards KJ (2011) Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS One 6:e25386

    Article  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186

    Article  CAS  Google Scholar 

  • Theil EC (2003) Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr Opin Chem Biol 15:304–311

    Article  CAS  Google Scholar 

  • Wachtershaüser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci 87:200–204

    Article  Google Scholar 

  • Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790:600–605

    Article  CAS  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  • Williams RJP, Frausto da Silva JJR (1999) Bringing chemistry to life. Oxford University Press Inc, New York

    Google Scholar 

  • Xu XM, Møller SG (2011) Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 15:271–307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Expert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Expert, D. (2012). Iron, an Element Essential to Life. In: Expert, D., O'Brian, M. (eds) Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5267-2_1

Download citation

Publish with us

Policies and ethics