Skip to main content

The Importance of the Environment in Brain Aging: Be Happy, Live Longer!

  • Chapter
  • First Online:
Brain Aging and Therapeutic Interventions

Abstract

The prevalence of age-related neurodegenerative disorders in the elderly has dramatically increased in parallel to life expectancy and social aging. This demands development of effective therapeutic/preventive interventions aimed to slow down the negative effects of aging and extend health-span. Here, we overview the mechanisms underlying brain aging in the context of the oxi-inflamm-aging theory, and discuss cutting edge promising findings opening up the possibility to reverse brain and physiological aging based on environmental enrichment. The enriched environment (EE) represents an experimental approach in animal models to an active social, mental and physical life-style in humans. Interaction with the EE provides the animals with a diversion from the monotonous and thus stressful cage life. Most important, maintenance of life-long “diversion” by means of EE extends lifespan in mice. This sighting confirms the great influence of life-style upon brain aging, and suggests that the “happier” we are, the longer we might live in good health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Fernández P, Puerto M, Maté I, Ribera JM, De la Fuente M (2008) Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatr Soc 56:2244–2251

    Article  PubMed  Google Scholar 

  • Alonso-Fernández P, De la Fuente M (2011) Role of the immune system in aging and longevity. Curr Aging Sci 4:78–100

    Article  PubMed  Google Scholar 

  • Arendash GW, Garcia MF, Costa DA, Cracchiolo JR, Wefes IM, Potter H (2004) Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport 15:1751–1754

    Article  PubMed  Google Scholar 

  • Arranz L, Guayerbas N, De la Fuente M (2007) Impairment of several immune functions in anxious women. J Psychosom Res 62:1–8

    Article  PubMed  Google Scholar 

  • Arranz L, De Vicente A, Muñoz M, De la Fuente M (2009) Impairment of immune function in the social excluded homeless population. Neuroimmunomodulation 16:251–260

    Article  PubMed  CAS  Google Scholar 

  • Arranz L, De Castro NM, Baeza I, Maté I, Viveros MP, De la Fuente M (2010a) Environmental enrichment improves age-related immune system impairment. Long-term exposure since adulthood increases life span in mice. Rejuvenation Res 13:415–428

    Article  Google Scholar 

  • Arranz L, Lord JM, De la Fuente M (2010b) Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice. Age (Dordr) 32:451–466

    Article  CAS  Google Scholar 

  • Arranz L, Caamaño JH, Lord JM, De la Fuente M (2010c) Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor kappa B. J Gerontol A Biol Sci Med Sci 65:941–950

    Article  Google Scholar 

  • Arranz L, De Castro NM, Baeza I, De la Fuente M (2010d) Differential expression of Toll-like receptor 2 and 4 on peritoneal leukocyte populations from long-lived and non-selected old female mice. Biogerontology 11:475–482

    Article  CAS  Google Scholar 

  • Arranz L, Naudí A, De la Fuente M, Pamplona R (2012) Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. Age (Dordr). doi: 10.1007/s11357–012-9391–0

    Google Scholar 

  • Balu M, Sangeetha P, Murali G, Panneerselvam C (2005) Age-related oxidative protein damages in central nervous system of rats: modulatory role of grape seed extract. Int J Dev Neuroscience 23:501–507

    Article  CAS  Google Scholar 

  • Barak Y (2006) The immune system and happiness. Autoimmun Rev 5:523–527

    Article  PubMed  CAS  Google Scholar 

  • Barber DA, Harris SR (1994) Oxygen free radicals and antioxidants: a review. Am Pharm 34:26–35

    Google Scholar 

  • Barja G (2002) Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Aging Res Rev 1:397–411

    Article  CAS  Google Scholar 

  • Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry 35:480–487

    Article  PubMed  CAS  Google Scholar 

  • Belz EE, Kennell JS, Czambel RK, Rubin RT, Rhodes ME (2003) Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats. Pharmacol Biochem Behav 76:481–486

    Article  PubMed  CAS  Google Scholar 

  • Benaroya-Milshtein N, Hollander N, Apter A, Kukulansky T, Raz N, Wilf A, Yaniv I, Pick CG (2004) Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur J Neurosci 20:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky HO, Del Rey A (2007) Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun 21:34–44

    Article  PubMed  CAS  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of aging and cognitive decline. Nature 464:529–535

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046

    Article  PubMed  Google Scholar 

  • Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21:513–521

    Article  PubMed  Google Scholar 

  • Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitrochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Guffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Aging Dev 125:325–335

    Article  PubMed  CAS  Google Scholar 

  • Castle SC, Uyemura K, Fulop T, Makinodan T (2007) Host resistance and immune responses in advanced age. Clin Geriatr Med 23:463–79

    Article  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chen JC, Hardy PA, Clauberg M, Joshi JG, Parravano J, Deck JH, Henkelman RM, Becker LE, Kucharczyk W (1989) T2 values in the human brain: comparison with quantitative assays of iron and ferritin. Radiology 173:521–526

    PubMed  CAS  Google Scholar 

  • Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, Bryan RN (1998) Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol 55:169–179

    Article  PubMed  CAS  Google Scholar 

  • Costa-Pinto FA, Palermo-Nieto J (2010) Neuroimmune interactions in stress. Neuroimmunomodulation 17:196–199

    Article  PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Iglseder B, Aigner L (2011) Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain. Gerontology 57:559–564

    Article  PubMed  Google Scholar 

  • De la Fuente M (2008) Role of neuroimmunomodulation in aging. Neuroimmunomodulation 15:213–223

    Article  PubMed  CAS  Google Scholar 

  • De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune systemin oxi-inflamm-aging. Curr Pharm Des 15:3003–3026

    Article  PubMed  CAS  Google Scholar 

  • De Martinis M, Franceschi C, Monti D, Ginaldi L (2005) Inflamm-aging and lifelong antigenic load as major determinants of aging rate and longevity. FEBS Lett 579:2035–2039

    Article  PubMed  CAS  Google Scholar 

  • De Martinis M, Franceschi C, Monti D, Ginaldi L (2006) Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 80:219–227

    Article  PubMed  CAS  Google Scholar 

  • De la Rosa O, Pawelec G, Peralbo E, Wikby A, Mariani E, Mocchegiani E, Tarazona R, Solana R (2006) Immunological biomarkers of aging in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology 7:471–481

    Article  CAS  Google Scholar 

  • Dhenain M, Michot JL, Volk A, Picq JL, Boller F (1997) T2-weighted MRI studies of mouse lemurs: a primate model of brain aging. Neurobiol Aging 18:517–521

    Article  PubMed  CAS  Google Scholar 

  • Donahue AN, Aschner M, Lash LH, Syversen T, Sonntag WE (2006) Growth hormone administration to aged animals reduces disulfideglutathione levels in hippocampus. Mech Aging Dev 127:57–63

    Article  PubMed  CAS  Google Scholar 

  • Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. AJR Am J Roentgenol 147:103–110

    PubMed  CAS  Google Scholar 

  • Dröge W (2002) Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 37:1333–1345

    Article  PubMed  Google Scholar 

  • Dröge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  PubMed  Google Scholar 

  • Fabris N (1990) A neuroendocrine-immune theory of aging. Int J Neurosci 51:373–375

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz ML, Martínez M, De Juan E, Diez A, Bustos G, Miquel J (1994) Impairment of mitochondrial oxidative phosphorylation in the brain of aged mice. Brain Res 644:335–338

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–182

    Google Scholar 

  • Gallagher M, Landfield PW, McEwen B (1996) Hippocampal neurodegeneration in aging. Science 274:484–485

    Article  PubMed  CAS  Google Scholar 

  • Görtz N, Lewejohann L, Tomm M, Ambrée O, Keyvani K, Paulus W, Sachser N (2008) Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behav Brain Res 191:43–48

    Article  PubMed  Google Scholar 

  • Guayerbas N, De la Fuente M (2003) An impairment of phagocytic function is linked to a shorter life span in two strains of prematurely aging mice. Dev Comp Immunol 27:339–350

    Article  PubMed  CAS  Google Scholar 

  • Guayerbas N, Catalán M, Víctor VM, Miquel J, De la Fuente M (2002a) Relation of behaviour and macrophage function to life span in a murine model of premature immunosenescence. Behav Brain Res 134(1–2):41–48

    Google Scholar 

  • Guayerbas N, Puerto M, Víctor VM, Miquel J, De la Fuente M (2002b) Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol 37(2–3):249–256

    Google Scholar 

  • Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A 98:10469–10474

    Article  PubMed  CAS  Google Scholar 

  • Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J (2003) Aging and genome maintenance: lessons from the mouse? Science 299(5611):1355–1359

    Google Scholar 

  • Hawkley LC, Cacioppo JT (2004) Stress and the aging immune system. Brain Behav Immun 18:114–119

    Article  PubMed  CAS  Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    Article  PubMed  Google Scholar 

  • High KP (2004) Infection as a cause of age-related morbidity and mortality. Aging Res Rev 3:1–14

    Article  Google Scholar 

  • Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A (2004) Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav 80:589–594

    Article  PubMed  CAS  Google Scholar 

  • Kozorovitskiy Y, Gould E (2004) Dominance hieraechy influences adult neurogenesis in the dentate gyrus. J Neurosci 24:6755–6759

    Article  PubMed  CAS  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model to healthy centenarians? Science 299:1342–1346

    Article  PubMed  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the aging human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Rev Neurosci 10:434–445

    Article  CAS  Google Scholar 

  • Makrantonaki E, Schonknecht P, Hossini AM, Kaiser E, Katsouli MM, Adjaye J, Schröder J, Zouboulis CC (2010) Skin and brain age together: the role of hormones in the aging process. Exp Gerontol 45:801–813

    Article  PubMed  CAS  Google Scholar 

  • Mark RE, Griffin ST, Graham DI (1997) Aging associated changes in human brain. J Neuropathol Exp Neurol 56:1269–1275

    Article  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  PubMed  CAS  Google Scholar 

  • Marx F, Blasko I, Pavelka M, Grubeck-Loebenstein B (1998) The possible role of the immune system in Alzheimer’s disease. Exp Gerontol 33:871–881

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Duan W, Lee J, Guo Z (2001) Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: molecular mechanisms. Mech Aging Dev 122:757–778

    Article  PubMed  CAS  Google Scholar 

  • Meshi D, Drew MR, Saxe M, Ansorge MS, David D, Santarelli L, Malapani C, Moore H, Hen R (2006) Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 9:729–731

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  PubMed  CAS  Google Scholar 

  • Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  PubMed  CAS  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    Article  PubMed  CAS  Google Scholar 

  • Murphy DG, DeCarli C, Schapiro MB, Rapoport SI, Horwitz B (1992) Age-related differences in volumes of subcortical nuclei, brain matter, and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging. Arch Neurol 49:839–845

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS (1999) Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39:569–578

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajan J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of nervous system. Nat Rev Neurosci 7:697–709

    Article  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan HM, Mohammad HP, Baylin SB (2008) Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet 4:e1000155

    Google Scholar 

  • Pawelec G, Barnett Y, Forsey R, Frasca D, Globerson A, McLeod J, Caruso C, Franceschi C, Fülöp T, Gupta S, Mariani E, Mocchegiani E, Solana R (2002) T cells and aging, January 2002 update. Front Biosci 7:d1056–d1183

    PubMed  CAS  Google Scholar 

  • Pham TM, Winblad B, Granholm AC, Mohammed AH (2002) Environmental influences on brain neurotrophins in rats. Pharmacol Biochem Behav 73:167–175

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Calabrese V, Calvani M, Butterfield DA (2006) Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal 8:381–394

    Article  PubMed  CAS  Google Scholar 

  • Puerto M, Guayerbas N, Alvarez P, De la Fuente M (2005) Modulation of neuropeptide Y and norepinephrine on several leucocyte functions in adult, old and very old mice. J Neuroimmunol 165(1–2):33–40

    Google Scholar 

  • Rattan SI (2008) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389:267–272

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (2010) Targeting the age-related occurrence, removal, and accumulation of molecular damage by hormesis. Ann N Y Acad Sci 1197:28–32

    Article  PubMed  CAS  Google Scholar 

  • Roy V, Belzung C, Delarue C, Chapillon P (2001) Environmental enrichment in BALB/c mice: effects in classical tests of anxiety and exposure to a predatory odor. Physiol Behav 74:313–320

    Article  PubMed  CAS  Google Scholar 

  • Sairanen M, Lucas G, Ernfors P, Castren M (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo FV, Vina J (2003) The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A (1993) Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology 35:119–124

    Article  PubMed  CAS  Google Scholar 

  • Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of aging. Aging Res Rev 3:265–301

    Article  CAS  Google Scholar 

  • Segovia G, Yagüe AG, García-Verdugo JM, Mora F (2006) Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 70:8–14

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Arco AD, Mora F (2009) Environmental enrichment, prefrontal cortex, stress, and aging of the brain. J Neural Transm 116:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Sigueira IR, Fochesatto C, Lucena da Silva Torres I, Dalmaz C, Netto CA (2005) Aging affects oxidative state in hippocampus, hypothalamus and adrenal glands of Wistar rats. Life Sci 78:271–278

    Article  Google Scholar 

  • Singh R, Kanwar SS, Sood PK, Nehru B (2011) Beneficial effects of folic acid on enhancement of memory and antioxidant status in aged rat brain. Cell Mol Neurobiol 31:83–91

    Article  PubMed  CAS  Google Scholar 

  • Small SA, Nava AS, Perera GM, Delapaz R, Stern Y (2000) Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer’s disease and aging. Microsc Res Tech 51:101–108

    Article  PubMed  CAS  Google Scholar 

  • Stichel CC, Luebbert H (2007) Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol Aging 28:1507–1521

    Article  PubMed  CAS  Google Scholar 

  • Sun LY, Bartke A (2007) Adult neurogenesis in the hippocampus of long-lived mice during aging. J Gerontol A Biol Sci Med Sci 62:117–125

    Article  PubMed  Google Scholar 

  • Tien RD, Felsberg GJ, Ferris NJ, Osumi AK (1993) The dementias: correlation of clinical features, pathophysiology, and neuroradiology. AJR Am J Roentgenol 161:245–255

    PubMed  CAS  Google Scholar 

  • Toescu EC, Verkhratsky A (2003) Neuronal aging from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria. Cell Calcium 34:311–323

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  CAS  Google Scholar 

  • Viña J, Sastre J, Pallardo F, Borras C (2003) Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal 5:549–556

    Article  PubMed  Google Scholar 

  • von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12:215–232

    Article  PubMed  CAS  Google Scholar 

  • von Gunten A, Ebbing K, Imhof A, Giannakopoulos P, Kövari E (2010) Brain aging in the oldest-old. Curr Gerontol Geriatr Res pii: 358531

    Google Scholar 

  • Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol 3:41–66

    Article  PubMed  CAS  Google Scholar 

  • Wayne SL, Rhyne RL, Garry PJ, Goodwin JS (1990) Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol 45:M45–48

    Article  PubMed  CAS  Google Scholar 

  • Zambrana Z, Marco EM, Arranz L, De Castro NM, Viveros MP, De la Fuente M (2007) Influence of aging and enriched environment on motor activity and emotional responses in mice. Ann N Y Acad Sci 1100:543–552

    Article  PubMed  Google Scholar 

  • Zhu Y, Carvey PM, Ling Z (2006) Age-related change in glutathione and glutathione related enzymes in rat brain. Brain Res 1090:35–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (BFU2008–04336, BFU2011–30336) and Ministry of Health (RETICEF, RD06/0013/003), and Research Group of UCM (910379). The authors would like to thank the CAI of Nuclear Magnetic Resonance and Electron Spin of the UCM, especially to Mª Encarnación Fernández and David Castejón for their technical support. Additional thanks to Nuria M. De Castro and Ianire Maté for helpful assistance, and José Regidor for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica De la Fuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De la Fuente, M., Arranz, L. (2012). The Importance of the Environment in Brain Aging: Be Happy, Live Longer!. In: Thakur, M., Rattan, S. (eds) Brain Aging and Therapeutic Interventions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5237-5_6

Download citation

Publish with us

Policies and ethics