Skip to main content

The Necessity of Biosemiotics: Matter-Symbol Complementarity

  • Chapter
  • First Online:
LAWS, LANGUAGE and LIFE

Part of the book series: Biosemiotics ((BSEM,volume 7))

Abstract

Biosemiotics distinguishes life from inanimate matter by its dependence on material construction controlled by coded symbolic information. This irreducible primitive distinction between matter and symbol is necessary for open-ended evolvability and the origin of life as we know it. This type of subject/object distinction is reestablished at many levels throughout all of evolution. In physics this becomes the distinction between material laws and symbolic measurements and models; in philosophy this is the distinction between brain and mind. These are all emergent epistemic distinctions, not ontological dualisms. The origin of life requires understanding the origin of this symbolic control and how inanimate molecules become functional messages. I discuss the necessary physical conditions that would allow such evolvable symbolic control of matter to arise.

Reprinted from Introduction to Biosemiotics, Marcello Barbieri, Ed. Dordrecht, The Netherlands: Springer, 2007, pp. 115–132.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbieri, M. (2003). The organic codes. An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2004). Life is “artifact-making”. Journal of Biosemiotics, 1(1), 81–101.

    Google Scholar 

  • Crutchfield, J. P., & Schuster, P. (Eds.). (2003). Evolutionary dynamics: Exploring the interplay of selection, accident, neutrality, and function. New York: Oxford University Press.

    Google Scholar 

  • Eigen, M. (1971). Self organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, 465–523.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., & Schuster, P. (1979). The hypercycle – a principle of natural self-organization. Berlin: Springer.

    Google Scholar 

  • Frauenfelder, H., & Wolynes, P. G. (1994). Biomolecules: Where the physics of complexity and simplicity meet. Physics Today, 47, 58–64.

    Article  CAS  Google Scholar 

  • Ghiselin, M. T. (1997). Metaphysics and the origin of species. Albany: University of New York Press.

    Google Scholar 

  • Hoffmeyer, J. (1998). The unfolding semiosphere. In G. Vijver, S. Salthe, & M. Delpos (Eds.), Biological and epistemological perspectives on selection and self-organization. Dordrecht: Kluwer.

    Google Scholar 

  • Hoffmeyer, J. (2000). Code-duality and the epistemic cut. In C. Jerry & G. Van de Vijver (Eds.), Closure. Emergent organizations and their dynamics (pp. 175–186). New York: Annals of the New York Academy of Sciences.

    Google Scholar 

  • Hoffmeyer, J., & Emmeche, C. (1991). Code duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling. New York: Mouton de Gruyter.

    Google Scholar 

  • Jakobson, R. (1970). Linguistics. In Main trends of research in the social and human sciences I (p. 438). Paris/The Hague: Mouton-UNESCO.

    Google Scholar 

  • Juarrero, A. (1998). Causality as constraint. In G. Vijver, S. Salthe, & M. Delpos (Eds.), Evolutionary systems. Biological and epistemological perspectives on selection and self-organization. Dordrecht: Kluwer.

    Google Scholar 

  • Kanerva, P. (1988). Sparse distributed memory. Cambridge: MIT Press.

    Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Monod, J. (1971). Chance and necessity. New York: Knopf.

    Google Scholar 

  • Pattee, H. H. (1972). Laws and constraints, symbols and languages. In C. H. Waddington (Ed.), Toward a theoretical biology 4. Essays (pp. 248–258). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Pattee, H. H. (1980). Clues from molecular symbol systems. In U. Bellugi & M. Studdert-Kennedy (Eds.) Signed and spoken languages: Biological constraints on linguistic forms (pp. 261–273). Dahlem Konferenzen, Berlin: Verlag Chemie GmbH.

    Google Scholar 

  • Pauli, W. (1994). The philosophical significance of the idea of complementarity. In C. P. Enz & K. von Meyenn (Eds.), Writings on physics and philosophy (pp. 35–48). Berlin: Springer, (see p. 41). First published under the title “Die philosophische Bedeutung der Idee der Komplementarität” in Experientia 6(Heft 2), pp. 72–75, 1950.

    Google Scholar 

  • Polanyi, M. (1968). Life’s irreducible structure. Science, 160, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, L. (2001). Evolution with material symbol systems. Biosystems, 60(1–3), 95–121.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, P. (1998). Evolution in an RNA world. In M. G. Ord & L. A. Stocken (Eds.), Foundations of modern biochemistry, Vol. IV: More landmarks in biochemistry (pp. 159–198). Stamford: JAI Press.

    Chapter  Google Scholar 

  • Schuster, P., Fontana, W., Stadler, P. F., & Hofacker, I. L. (1994). From sequences to shapes and back: A case study in RNA secondary structures. Proceedings of the Royal Society of London B, 255, 279–284.

    Article  CAS  Google Scholar 

  • Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Von Neumann, J. (1955). Mathematical foundations of quantum mechanics (pp. 418–421). Princeton: Princeton University Press.

    Google Scholar 

  • Von Neumann, J. (1966). Theory of self-reproducing Automata (pp.74–87 and pp. 121–123). Edited and completed by A. W. Burks, Urbana/London: University of Illinois Press. (Original lectures ca. 1952).

    Google Scholar 

  • Wolynes, P. G., Onuchic, J. N., & Thirumalai, D. (1995). Navigating the folding routes. Science, 267, 1.

    Article  Google Scholar 

  • Zurek, W. H. (1990). Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pattee, H.H. (2012). The Necessity of Biosemiotics: Matter-Symbol Complementarity. In: LAWS, LANGUAGE and LIFE. Biosemiotics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5161-3_18

Download citation

Publish with us

Policies and ethics