Skip to main content

Application of Artificial Neural Networks in Short-Term Rainfall Forecasting

  • Chapter
  • First Online:

Abstract

Short-term rainfall is important in agriculture, industry, the energy sector, and any other water-dependent activities where profitability depends on climatic conditions. The scarcity of reliable prediction models encouraged the authors of the present study to develop a modeling platform using a neurogenetic model to estimate rainfall occurrence within a short-term duration. The data on both the quantity and the probability of occurrence of rainfall based on the previous 1–5 days were used to predict the quantity and occurrence of rainfall 1–4 days hence. The potential of neurogenetic models to predict short-term rainfall on the basis of such a small-scale data set was analyzed with the aim of developing a software platform for laypeople and to help related professionals maintain the profitability of their organization by reducing the likelihood of wastage resulting from large-scale prediction errors, which are common with the available linear models. The results indicate that neurogenetic models can reliably predict rainfall 1, 3, and 4 days in advance, but not 2 and 5 days, if the models are trained with a suitable algorithm. The subpar performance of the 2- and 5-day rainfall prediction models was attributed to the choice of training algorithms and length of time, although the reliable prediction of rainfall even 1 day in advance warrants pursuing further development of the present investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvisi S, Franchini M (2012) Grey neural networks for river stage forecasting with uncertainty. Phys Chem Earth Pt A/B/C 42–44:108–118

    Article  Google Scholar 

  • Bodri L, Čermák V (2000) Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv Eng Softw 31(5):311–321

    Article  Google Scholar 

  • Burlando P, Rosso R, Cadavid LG, Salas JD (1993) Forecasting of short-term rainfall using ARMA models. J Hydrol 144(1–4):193–211

    Article  Google Scholar 

  • French MN, Bras RL, Krajewski WF (1992) A Monte Carlo study of rainfall forecasting with a stochastic model. Stoch Hydrol Hydraul 6(1):27–45

    Article  Google Scholar 

  • Gautam MR, Watanabe K, Ohno H (2004) Effect of bridge construction on floodplain hydrology—assessment by using monitored data and artificial neural network models. J Hydrol 292(1–4):182–197

    Article  Google Scholar 

  • Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7(2):585–592

    Article  Google Scholar 

  • Khashei M, Hamadani AZ, Bijari M (2012) A novel hybrid classification model of artificial neural networks and multiple linear regression models. Expert Syst Appl 39(3):2606–2620

    Article  Google Scholar 

  • Kim J-W, Pachepsky YA (2010) Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J Hydrol 394(3–4):305–314

    Article  Google Scholar 

  • Kisi O, Cimen M (2012) Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng Appl Artif Intel 25(4):783–792

    Article  Google Scholar 

  • Kisi O, Ozkan C, Akay B (2012) Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm. J Hydrol 428–429:94–103

    Article  Google Scholar 

  • Kottegoda NT, Natale L, Raiteri E (2003) A parsimonious approach to stochastic multisite modelling and disaggregation of daily rainfall. J Hydrol 274(1–4):47–61

    Article  Google Scholar 

  • Lekouch I, Lekouch K, Muselli M, Mongruel A, Kabbachi B, Beysens D (2012) Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J Hydrol (in press), Accepted manuscript, Available online 13 Apr 2012

    Google Scholar 

  • Manzato A (2007) Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmos Res 83(2–4):349–365

    Article  Google Scholar 

  • Olsson J, Uvo CB, Jinno K (2001) Statistical atmospheric downscaling of short-term extreme rainfall by neural networks. Phys Chem Earth Pt B Hydrol Ocean Atmos 26(9):695–700

    Article  Google Scholar 

  • Pan T-y, Wang R-y (2004) State space neural networks for short term rainfall-runoff forecasting. J Hydrol 297(1–4):34–50

    Article  Google Scholar 

  • Papalexiou S-M, Koutsoyiannis D, Montanari A (2011) Can a simple stochastic model generate rich patterns of rainfall events? J Hydrol 411(3–4):279–289

    Article  Google Scholar 

  • Piotrowski AP, Rowinski PM, Napiorkowski JJ (2012) Comparison of evolutionary computation techniques for noise injected neural network training to estimate longitudinal dispersion coefficients in rivers. Expert Syst Appl 39(1):1354–1361

    Article  Google Scholar 

  • Sugimoto S, Nakakita E, Ikebuchi S (2001) A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model. J Hydrol 242(1–2):137–155

    Article  Google Scholar 

  • Thielen J, Boudevillain B, Andrieu H (2000) A radar data based short-term rainfall prediction model for urban areas — a simulation using meso-scale meteorological modeling. J Hydrol 239(1–4):97–114

    Article  Google Scholar 

  • Zhao L, Hicks FE, Robinson Fayek A (2012) Applicability of multilayer feed-forward neural networks to model the onset of river breakup. Cold Reg Sci Technol 70:32–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Majumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Majumder, M., Barman, R.N. (2013). Application of Artificial Neural Networks in Short-Term Rainfall Forecasting. In: Majumder, M., Barman, R. (eds) Application of Nature Based Algorithm in Natural Resource Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5152-1_4

Download citation

Publish with us

Policies and ethics